Kynurenine is an endothelium-derived relaxing factor produced during inflammation

A Corrigendum to this article was published on 01 May 2010

This article has been updated


Control of blood vessel tone is central to vascular homeostasis. Here we show that metabolism of tryptophan to kynurenine by indoleamine 2,3-dioxygenase (Ido) expressed in endothelial cells contributes to arterial vessel relaxation and the control of blood pressure. Infection of mice with malarial parasites (Plasmodium berghei) or induction of endotoxemia in mice led to endothelial expression of Ido, decreased plasma tryptophan concentration, increased kynurenine concentration and hypotension. Pharmacological inhibition of Ido increased blood pressure in systemically inflamed mice but not in mice deficient in Ido or interferon-γ, which is required for Ido induction. Both tryptophan and kynurenine dilated preconstricted porcine coronary arteries; the dilating effect of tryptophan required the presence of active Ido and an intact endothelium, whereas the effect of kynurenine was endothelium independent. The arterial relaxation induced by kynurenine was mediated by activation of the adenylate and soluble guanylate cyclase pathways. Kynurenine administration decreased blood pressure in a dose-dependent manner in spontaneously hypertensive rats. Our results identify tryptophan metabolism by Ido as a new pathway contributing to the regulation of vascular tone.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Ido pathway contributes to the regulation of blood pressure in PbA-infected mice.
Figure 2: Ido contributes to the regulation of blood pressure in LPS-induced endotoxemia.
Figure 3: IFN-γ–dependent expression of Ido in endothelial cells and its associated conversion of tryptophan to kynurenine.
Figure 4: The Ido pathway metabolite kynurenine regulates vascular tone.
Figure 5: Kynurenine relaxes blood vessels via the sGC–cGMP–cGMP-dependent protein kinase pathway.
Figure 6: The adenylyl cyclase–cAMP pathway contributes to kynurenine-induced vessel relaxation.

Change history

  • 06 May 2010

    In the version of this article initially published, the symbol key in Figure 2g,h is incorrect. The correct symbol key is open circles for Ido1–/– and filled circles for WT. The error has been corrected in the HTML and PDF versions of the article.


  1. 1

    Riedemann, N.C., Guo, R.F. & Ward, P.A. Novel strategies for the treatment of sepsis. Nat. Med. 9, 517–524 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Gómez-Jiménez, J. et al. L-arginine: nitric oxide pathway in endotoxemia and human septic shock. Crit. Care Med. 23, 253–258 (1995).

    Article  Google Scholar 

  3. 3

    Ignarro, L.J., Cirino, G., Casini, A. & Napoli, C. Nitric oxide as a signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol. 34, 879–886 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Kröncke, K.D., Fehsel, K. & Kolb-Bachofen, V. Inducible nitric oxide synthase in human diseases. Clin. Exp. Immunol. 113, 147–156 (1998).

    Article  Google Scholar 

  5. 5

    Meyer, J. et al. Reversal of hyperdynamic response to continuous endotoxin administration by inhibition of NO synthesis. J. Appl. Physiol. 73, 324–328 (1992).

    CAS  Article  Google Scholar 

  6. 6

    MacMicking, J.D. et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81, 641–650 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Ochoa, J.B. et al. Nitrogen oxide levels in patients after trauma and during sepsis. Ann. Surg. 214, 621–626 (1991).

    CAS  Article  Google Scholar 

  8. 8

    Bakker, J. et al. Administration of the nitric oxide synthase inhibitor NG-methyl-L-arginine hydrochloride (546C88) by intravenous infusion for up to 72 hours can promote the resolution of shock in patients with severe sepsis: results of a randomized, double-blind, placebo-controlled multicenter study (study no. 144–002). Crit. Care Med. 32, 1–12 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Kirkebøen, K.A. & Strand, O.A. The role of nitric oxide in sepsis—an overview. Acta Anaesthesiol. Scand. 43, 275–288 (1999).

    Article  Google Scholar 

  10. 10

    Cauwels, A., Janssen, B., Buys, E., Sips, P. & Brouckaert, P. Anaphylactic shock depends on PI3K and eNOS-derived NO. J. Clin. Invest. 116, 2244–2251 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Thomas, S.R. & Stocker, R. Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the kynurenine pathway. Redox Rep. 4, 199–220 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Yoshida, R., Oku, T., Kishida, T. & Hayaishi, O. Induction of pulmonary indoleamine 2,3-dioxygenase by interferon. Proc. Natl. Acad. Sci. USA 78, 129–132 (1981).

    CAS  Article  Google Scholar 

  13. 13

    Werner, E.R. et al. Interferon-γ–induced degradation of tryptophan by human cells in vitro. Biol. Chem. Hoppe Seyler 368, 1407–1412 (1987).

    CAS  Article  Google Scholar 

  14. 14

    Hansen, A.M., Driussi, C., Turner, V., Takikawa, O. & Hunt, N.H. Tissue distribution of indoleamine 2,3-dioxygenase in normal and malaria-infected tissue. Redox Rep. 5, 112–115 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Ball, H.J., McParland, B., Driussi, C. & Hunt, N.H. Isolating vessels from the mouse brain for gene expression analysis using laser capture microdissection. Brain Res. Brain Res. Protoc. 9, 206–213 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Sakash, J.B., Byrne, G.I., Lichtman, A. & Libby, P. Cytokines induce indoleamine 2,3-dioxygenase expression in human atheroma-associated cells: implications for persistent Chlamydophila pneumoniae infection. Infect. Immun. 70, 3959–3961 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Owe-Young, R. et al. Kynurenine pathway metabolism in human blood-brain barrier cells: implications for immune tolerance and neurotoxicity. J. Neurochem. 105, 1346–1357 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Mitchell, A.J. et al. Early cytokine production is associated with protection from murine cerebral malaria. Infect. Immun. 73, 5645–5653 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Hansen, A.M. et al. Increased expression of indoleamine 2,3-dioxygenase in murine malaria infection is predominantly localised to the vascular endothelium. Int. J. Parasitol. 34, 1309–1319 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Bruneel, F. et al. Shock complicating severe falciparum malaria in European adults. Intensive Care Med. 23, 698–701 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Chang, W.L. et al. CD8+ T cell depletion ameliorates circulatory shock in Plasmodium berghei–infected mice. Infect. Immun. 69, 7341–7348 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Munn, D.H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Connelly, L., Madhani, M. & Hobbs, A.J. Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived NO in vivo. J. Biol. Chem. 280, 10040–10046 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Quaschning, T. et al. Lack of endothelial nitric oxide synthase promotes endothelin-induced hypertension: lessons from endothelin-1 transgenic/endothelial nitric oxide synthase knockout mice. J. Am. Soc. Nephrol. 18, 730–740 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Neill, A.L. & Hunt, N.H. Pathology of fatal and resolving Plasmodium berghei cerebral malaria in mice. Parasitology 105, 165–175 (1992).

    Article  Google Scholar 

  26. 26

    Sanni, L.A. et al. Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and noncerebral malaria. Am. J. Pathol. 152, 611–619 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Stasch, J.P. et al. NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br. J. Pharmacol. 136, 773–783 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Schmidt, H.H.H.W., Schmidt, P.M. & Stasch, J.P. NO- and haem-independent soluble guanylate cyclase activators. in Handbood of Experimental Pharmacology: cGMP Generators, Effectors and Therapeutic Implications (eds. Hofmann, F., Schmidt, H.H.H.W. & Stasch, J.P.) 309–339 (Springer Verlag, Berlin, 2009).

  29. 29

    Stasch, J.P. et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J. Clin. Invest. 116, 2552–2561 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Butt, E. et al. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J. Biol. Chem. 269, 14509–14517 (1994).

    CAS  PubMed  Google Scholar 

  31. 31

    Lincoln, T.M., Cornwell, T.L. & Taylor, A.E. cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am. J. Physiol. 258, C399–C407 (1990).

    CAS  Article  Google Scholar 

  32. 32

    Armstrong, R.S., Irwin, M.J. & Wright, P.E. Resonance Raman evidence for constrained heme structure in soybean leghemoglobin and its derivatives. Biochem. Biophys. Res. Commun. 95, 682–689 (1980).

    CAS  Article  Google Scholar 

  33. 33

    Jung, I.D. et al. Blockade of indoleamine 2,3-dioxygenase protects mice against lipopolysaccharide-induced endotoxin shock. J. Immunol. 182, 3146–3154 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Tetsutani, K., To, H., Torii, M., Hisaeda, H. & Himeno, K. Malaria parasite induces tryptophan-related immune suppression in mice. Parasitology 134, 923–930 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Miu, J., Ball, H.J., Mellor, A.L. & Hunt, N.H. Effect of indoleamine dioxygenase-1 deficiency and kynurenine pathway inhibition on murine cerebral malaria. Int. J. Parasitol. 39, 363–370 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Wiesel, P. et al. Exacerbation of chronic renovascular hypertension and acute renal failure in heme oxygenase-1–deficient mice. Circ. Res. 88, 1088–1094 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Luria, A. et al. Compensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice. J. Biol. Chem. 282, 2891–2898 (2007).

    CAS  Article  Google Scholar 

  38. 38

    Wiesel, P. et al. Endotoxin-induced mortality is related to increased oxidative stress and end-organ dysfunction, not refractory hypotension, in heme oxygenase-1–deficient mice. Circulation 102, 3015–3022 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Gramaglia, I. et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat. Med. 12, 1417–1422 (2006).

    CAS  Article  Google Scholar 

  40. 40

    Mellor, A.L. et al. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J. Immunol. 171, 1652–1655 (2003).

    CAS  Article  Google Scholar 

  41. 41

    Krege, J.H., Hodgin, J.B., Hagaman, J.R. & Smithies, O. A noninvasive computerized tail-cuff system for measuring blood pressure in mice. Hypertension 25, 1111–1115 (1995).

    CAS  Article  Google Scholar 

  42. 42

    Lau, A.K. et al. Probucol promotes functional reendothelialization in balloon-injured rabbit aortas. Circulation 107, 2031–2036 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Thomas, S.R., Chen, K. & Keaney, J.F., Jr. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase–dependent signaling pathway. J. Biol. Chem. 277, 6017–6024 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Palmer, D., Tsoi, K. & Maurice, D.H. Synergistic inhibition of vascular smooth muscle cell migration by phosphodiesterase 3 and phosphodiesterase 4 inhibitors. Circ. Res. 82, 852–861 (1998).

    CAS  Article  Google Scholar 

  45. 45

    Becker, E.M. et al. The vasodilator-stimulated phosphoprotein (VASP): target of YC-1 and nitric oxide effects in human and rat platelets. J. Cardiovasc. Pharmacol. 35, 390–397 (2000).

    CAS  Article  Google Scholar 

  46. 46

    Thomas, S.R., Mohr, D. & Stocker, R. Nitric oxide inhibits indoleamine 2,3-dioxygenase activity in interferonγ-primed mononuclear phagocytes. J. Biol. Chem. 269, 14457–14464 (1994).

    CAS  PubMed  Google Scholar 

  47. 47

    Christen, S., Peterhans, E. & Stocker, R. Antioxidant activities of some tryptophan metabolites: Possible implication for inflammatory diseases. Proc. Natl. Acad. Sci. USA 87, 2506–2510 (1990).

    CAS  Article  Google Scholar 

  48. 48

    Hoenicka, M. et al. Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide and carbon monoxide. J. Mol. Med. 77, 14–23 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Schmidt, P., Schramm, M., Schröder, H. & Stasch, J.P. Preparation of heme-free soluble guanylate cyclase. Protein Expr. Purif. 31, 42–46 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Crawford, A., Hunt, N.H., Dawborn, J.K., Michelangeli, V.P. & Martin, T.J. Membranes from a transplantable osteogenic sarcoma responsive to parathyroid hormone and prostaglandins: regulation of adenylate cyclase and of hormone metabolism. J. Endocrinol. 77, 213–224 (1978).

    CAS  Article  Google Scholar 

  51. 51

    Thomas, S.R. et al. Antioxidants inhibit indoleamine 2,3-dioxygenase in IFN-γ–activated human macrophages: posttranslational regulation by pyrrolidine dithiocarbamate. J. Immunol. 166, 6332–6340 (2001).

    CAS  Article  Google Scholar 

Download references


We thank E. Andriambeloson, K. Choy, M. Finnemore, A. Mitchell and H. Salahifar for assistance and preliminary experiments, J. Whitworth for the suggestion to test the effect of kynurenine on blood pressure in spontaneously hypertensive rats, G. Head for advice on telemetry and B.H. Chong (University of New South Wales) for providing MEG-01 cells. This work was supported by project grants G03S1177 from the Australian National Heart Foundation to R.S., 400992 and 401106 from the National Health & Medical Research Council (NHMRC) of Australia to R.S., DP0987074 from the Australian Research Council to N.H.H. 512469 from the NHMRC to N.H.H. and National Heart Foundation (OS 98S0008) and Australian Research Council (DP0343325) fellowships to P.K.W. R.S. holds an NHMRC Senior Principal Research Fellowship and University of Sydney Medical Foundation and Professorial Research Fellowships.

Author information




J.F.K. Jr. and R.S. conceived of the project and performed initial experiments. Y.W., H.L., P.K.W., J.-P.S., D.C., B.J.W., S.R.T., D.S.C., J.F.K. Jr., N.H.H. and R.S. designed experiments and Y.W. performed most of the experiments and analyzed data. H.L. performed most experiments with porcine coronary arteries, G.M. performed immunohistochemistry, P.K.W. and S.R.T. performed experiments with endothelial cells, J.P.S. and M.H. performed experiments with isolated sGC, D.C. performed mouse endotoxemia experiments, B.J.W. performed experiments in spontaneous hypertensive rats, H.J.B. performed malarial infections of mice, V.K. established blood pressure measurements in unconscious rats and mice, and A.L.M generated Ido1-knockout mice. Y.W. and R.S. wrote and prepared the manuscript, with substantial contributions from H.L., J.F.K. Jr. and N.H.H.

Corresponding author

Correspondence to Roland Stocker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1–16 and Supplementary Methods (PDF 1371 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Liu, H., McKenzie, G. et al. Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med 16, 279–285 (2010).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing