Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Platelets contribute to postnatal occlusion of the ductus arteriosus

Abstract

The ductus arteriosus (DA) is a fetal shunt vessel between the pulmonary artery and the aorta that closes promptly after birth. Failure of postnatal DA closure is a major cause of morbidity and mortality particularly in preterm neonates. The events leading to DA closure are incompletely understood. Here we show that platelets have an essential role in DA closure. Using intravital microscopy of neonatal mice, we observed that platelets are recruited to the luminal aspect of the DA during closure. DA closure is impaired in neonates with malfunctioning platelet adhesion or aggregation or with defective platelet biogenesis. Defective DA closure resulted in a left-to-right shunt with increased pulmonary perfusion, pulmonary vascular remodeling and right ventricular hypertrophy. Our findings indicate that platelets are crucial for DA closure by promoting thrombotic sealing of the constricted DA and by supporting luminal remodeling. A retrospective clinical study revealed that thrombocytopenia is an independent predictor for failure of DA closure in preterm human newborns, indicating that platelets are likely to contribute to DA closure in humans.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Platelets are present in the mouse DA after birth.
Figure 2: Platelets are recruited rapidly to the closing mouse DA in vivo.
Figure 3: Loss of platelets leads to defective DA closure.
Figure 4: Defective platelet-driven DA sealing results in a hemodynamically relevant left-to-right shunt.
Figure 5: Platelets contribute to postnatal DA remodeling.
Figure 6: Platelets contribute to DA closure in human neonates.

References

  1. Tada, T. & Kishimoto, H. Ultrastructural and histological studies on closure of the mouse ductus arteriosus. Acta Anat. 139, 326–334 (1990).

    CAS  Article  Google Scholar 

  2. Hammerman, C. & Kaplan, M. Comparative tolerability of pharmacological treatments for patent ductus arteriosus. Drug Saf. 24, 537–551 (2001).

    CAS  Article  Google Scholar 

  3. Hermes-DeSantis, E.R. & Clyman, R.I. Patent ductus arteriosus: pathophysiology and management. J. Perinatol. 26 Suppl 1, S14–S18 discussion S22–S23 (2006).

    Article  Google Scholar 

  4. Lloyd, T.R. & Beekman, R.H. III. Clinically silent patent ductus arteriosus. Am. Heart J. 127, 1664–1665 (1994).

    CAS  Article  Google Scholar 

  5. Mitchell, S.C., Korones, S.B. & Berendes, H.W. Congenital heart disease in 56,109 births. Incidence and natural history. Circulation 43, 323–332 (1971).

    CAS  Article  Google Scholar 

  6. Van Overmeire, B. et al. Prophylactic ibuprofen in premature infants: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 364, 1945–1949 (2004).

    CAS  Article  Google Scholar 

  7. Fanaroff, A.A. et al. Trends in neonatal morbidity and mortality for very low birthweight infants. Am. J. Obstet. Gynecol. 196, 147.e1–147.e8 (2007).

    Article  Google Scholar 

  8. Bancalari, E., Claure, N. & Gonzalez, A. Patent ductus arteriosus and respiratory outcome in premature infants. Biol. Neonate 88, 192–201 (2005).

    Article  Google Scholar 

  9. Noori, S. et al. Failure of ductus arteriosus closure is associated with increased mortality in preterm infants. Pediatrics 123, e138–e144 (2009).

    Article  Google Scholar 

  10. Waleh, N. et al. The role of monocyte-derived cells and inflammation in baboon ductus arteriosus remodeling. Pediatr. Res. 57, 254–262 (2005).

    Article  Google Scholar 

  11. Slomp, J. et al. Formation of intimal cushions in the ductus arteriosus as a model for vascular intimal thickening. An immunohistochemical study of changes in extracellular matrix components. Atherosclerosis 93, 25–39 (1992).

    CAS  Article  Google Scholar 

  12. Clyman, R.I. Mechanisms regulating the ductus arteriosus. Biol. Neonate 89, 330–335 (2006).

    Article  Google Scholar 

  13. Shimada, S., Raju, T.N., Bhat, R., Maeta, H. & Vidyasagar, D. Treatment of patent ductus arteriosus after exogenous surfactant in baboons with hyaline membrane disease. Pediatr. Res. 26, 565–569 (1989).

    CAS  Article  Google Scholar 

  14. Kääpä, P., Seppanen, M., Kero, P. & Saraste, M. Pulmonary hemodynamics after synthetic surfactant replacement in neonatal respiratory distress syndrome. J. Pediatr. 123, 115–119 (1993).

    Article  Google Scholar 

  15. Coggins, K.G. et al. Metabolism of PGE2 by prostaglandin dehydrogenase is essential for remodeling the ductus arteriosus. Nat. Med. 8, 91–92 (2002).

    CAS  Article  Google Scholar 

  16. Reller, M.D., Buffkin, D.C., Colasurdo, M.A., Rice, M.J. & McDonald, R.W. Ductal patency in neonates with respiratory distress syndrome. A randomized surfactant trial. Am. J. Dis. Child. 145, 1017–1020 (1991).

    CAS  Article  Google Scholar 

  17. Kajino, H. et al. Tissue hypoxia inhibits prostaglandin and nitric oxide production and prevents ductus arteriosus reopening. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R278–R286 (2000).

    CAS  Article  Google Scholar 

  18. Clyman, R.I. et al. VEGF regulates remodeling during permanent anatomic closure of the ductus arteriosus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R199–R206 (2002).

    CAS  Article  Google Scholar 

  19. Massberg, S. et al. Fibrinogen deposition at the postischemic vessel wall promotes platelet adhesion during ischemia-reperfusion in vivo. Blood 94, 3829–3838 (1999).

    CAS  PubMed  Google Scholar 

  20. Massberg, S. et al. A crucial role of glycoprotein VI for platelet recruitment to the injured arterial wall in vivo. J. Exp. Med. 197, 41–49 (2003).

    CAS  Article  Google Scholar 

  21. Massberg, S. et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J. Exp. Med. 196, 887–896 (2002).

    CAS  Article  Google Scholar 

  22. Frenette, P.S., Johnson, R.C., Hynes, R.O. & Wagner, D.D. Platelets roll on stimulated endothelium in vivo: An interaction mediated by endothelial P-selectin. Proc. Natl. Acad. Sci. USA 92, 7450–7454 (1995).

    CAS  Article  Google Scholar 

  23. Massberg, S. et al. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb. Circulation 112, 1180–1188 (2005).

    CAS  Article  Google Scholar 

  24. Ruggeri, Z.M. Platelets in atherothrombosis. Nat. Med. 8, 1227–1234 (2002).

    CAS  Article  Google Scholar 

  25. Savage, B., Saldivar, E. & Ruggeri, Z.M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84, 289–297 (1996).

    CAS  Article  Google Scholar 

  26. Theilmeier, G. et al. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia. Blood 99, 4486–4493 (2002).

    CAS  Article  Google Scholar 

  27. Wu, D. et al. Inhibition of the von Willebrand (VWF)-collagen interaction by an antihuman VWF monoclonal antibody results in abolition of in vivo arterial platelet thrombus formation in baboons. Blood 99, 3623–3628 (2002).

    CAS  Article  Google Scholar 

  28. Emambokus, N.R. & Frampton, J. The glycoprotein IIb molecule is expressed on early murine hematopoietic progenitors and regulates their numbers in sites of hematopoiesis. Immunity 19, 33–45 (2003).

    CAS  Article  Google Scholar 

  29. Shivdasani, R.A. et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81, 695–704 (1995).

    CAS  Article  Google Scholar 

  30. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    CAS  Article  Google Scholar 

  31. Heymann, M.A., Rudolph, A.M. & Silverman, N.H. Closure of the ductus arteriosus in premature infants by inhibition of prostaglandin synthesis. N. Engl. J. Med. 295, 530–533 (1976).

    CAS  Article  Google Scholar 

  32. Friedman, W.F., Hirschklau, M.J., Printz, M.P., Pitlick, P.T. & Kirkpatrick, S.E. Pharmacologic closure of patent ductus arteriosus in the premature infant. N. Engl. J. Med. 295, 526–529 (1976).

    CAS  Article  Google Scholar 

  33. Struthmann, L. et al. Prothrombotic effects of diclofenac on arteriolar platelet activation and thrombosis in vivo. J. Thromb. Haemost. 7, 1727–1735 (2009).

    CAS  Article  Google Scholar 

  34. Antman, E.M. et al. Use of nonsteroidal antiinflammatory drugs: an update for clinicians: a scientific statement from the American Heart Association. Circulation 115, 1634–1642 (2007).

    Article  Google Scholar 

  35. Hippisley-Cox, J. & Coupland, C. Risk of myocardial infarction in patients taking cyclo-oxygenase-2 inhibitors or conventional non-steroidal anti-inflammatory drugs: population based nested case-control analysis. Br. Med. J. 330, 1366 (2005).

    CAS  Article  Google Scholar 

  36. Fischer, L.M., Schlienger, R.G., Matter, C.M., Jick, H. & Meier, C.R. Current use of nonsteroidal antiinflammatory drugs and the risk of acute myocardial infarction. Pharmacotherapy 25, 503–510 (2005).

    CAS  Article  Google Scholar 

  37. Gislason, G.H. et al. Risk of death or reinfarction associated with the use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs after acute myocardial infarction. Circulation 113, 2906–2913 (2006).

    CAS  Article  Google Scholar 

  38. Gordon, P.V. et al. A neonatal mouse model of intestinal perforation: investigating the harmful synergism between glucocorticoids and indomethacin. J. Pediatr. Gastroenterol. Nutr. 45, 509–519 (2007).

    CAS  Article  Google Scholar 

  39. Roberts, I., Stanworth, S. & Murray, N.A. Thrombocytopenia in the neonate. Blood Rev. 22, 173–186 (2008).

    Article  Google Scholar 

  40. Ruggeri, Z.M. & Mendolicchio, G.L. Adhesion mechanisms in platelet function. Circ. Res. 100, 1673–1685 (2007).

    CAS  Article  Google Scholar 

  41. Kasirer-Friede, A., Kahn, M.L. & Shattil, S.J. Platelet integrins and immunoreceptors. Immunol. Rev. 218, 247–264 (2007).

    CAS  Article  Google Scholar 

  42. Slomp, J. et al. Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler. Thromb. Vasc. Biol. 17, 1003–1009 (1997).

    CAS  Article  Google Scholar 

  43. Silver, M.M., Freedom, R.M., Silver, M.D. & Olley, P.M. The morphology of the human newborn ductus arteriosus: a reappraisal of its structure and closure with special reference to prostaglandin E1 therapy. Hum. Pathol. 12, 1123–1136 (1981).

    CAS  Article  Google Scholar 

  44. Seidner, S.R. et al. Combined prostaglandin and nitric oxide inhibition produces anatomic remodeling and closure of the ductus arteriosus in the premature newborn baboon. Pediatr. Res. 50, 365–373 (2001).

    CAS  Article  Google Scholar 

  45. Clyman, R.I. et al. Permanent anatomic closure of the ductus arteriosus in newborn baboons: the roles of postnatal constriction, hypoxia and gestation. Pediatr. Res. 45, 19–29 (1999).

    CAS  Article  Google Scholar 

  46. André, P. et al. Platelets adhere to and translocate on von Willebrand factor presented by endothelium in stimulated veins. Blood 96, 3322–3328 (2000).

    PubMed  Google Scholar 

  47. Andrews, N.C., Erdjument-Bromage, H., Davidson, M.B., Tempst, P. & Orkin, S.H. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362, 722–728 (1993).

    CAS  Article  Google Scholar 

  48. Smith, G.C. The pharmacology of the ductus arteriosus. Pharmacol. Rev. 50, 35–58 (1998).

    CAS  PubMed  Google Scholar 

  49. Olley, P.M., Coceani, F. & Rowe, R.D. Role of prostaglandin E1 and E2 in the management of neonatal heart disease. Adv. Prostaglandin Thromboxane Res. 4, 345–353 (1978).

    CAS  PubMed  Google Scholar 

  50. Radomski, M.W. & Moncada, S. The biological and pharmacological role of nitric oxide in platelet function. Adv. Exp. Med. Biol. 344, 251–264 (1993).

    CAS  Article  Google Scholar 

  51. Fabre, J.E. et al. Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation. J. Clin. Invest. 107, 603–610 (2001).

    CAS  Article  Google Scholar 

  52. Clyman, R.I., Mauray, F., Roman, C., Rudolph, A.M. & Heymann, M.A. Circulating prostaglandin E2 concentrations and patent ductus arteriosus in fetal and neonatal lambs. J. Pediatr. 97, 455–461 (1980).

    CAS  Article  Google Scholar 

  53. Seibert, K. et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA 91, 12013–12017 (1994).

    CAS  Article  Google Scholar 

  54. Offermanns, S. Activation of platelet function through G protein–coupled receptors. Circ. Res. 99, 1293–1304 (2006).

    CAS  Article  Google Scholar 

  55. Thomas, D.W. et al. Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. J. Clin. Invest. 102, 1994–2001 (1998).

    CAS  Article  Google Scholar 

  56. MacIntyre, D.E. & Gordon, J.L. Calcium-dependent stimulation of platelet aggregation by PGE. Nature 258, 337–339 (1975).

    CAS  Article  Google Scholar 

  57. Higgs, E.A., Higgs, G.A., Moncada, S. & Vane, J.R. Prostacyclin (PGI2) inhibits the formation of platelet thrombi in arterioles and venules of the hamster cheek pouch. 1977. Br. J. Pharmacol. 120, 439–443 discussion 437–438 (1997).

    CAS  Article  Google Scholar 

  58. Meyers, K.M., Seachord, C.L., Holmsen, H., Smith, J.B. & Prieur, D.J. A dominant role of thromboxane formation in secondary aggregation of platelets. Nature 282, 331–333 (1979).

    CAS  Article  Google Scholar 

  59. Sheffield, M.J., Schmutz, N., Lambert, D.K., Henry, E. & Christensen, R.D. Ibuprofen lysine administration to neonates with a patent ductus arteriosus: effect on platelet plug formation assessed by in vivo and in vitro measurements. J. Perinatol. 29, 39–43 (2009).

    CAS  Article  Google Scholar 

  60. Boo, N.Y., Mohd-Amin, I., Bilkis, A.A. & Yong-Junina, F. Predictors of failed closure of patent ductus arteriosus with indomethacin. Singapore Med. J. 47, 763–768 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Shakibaei, S. Reder and J. Schwarz for their support. This work was supported by the Deutsche Forschungsgemeinschaft and the Ernst und Berta-Grimmke Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.E., K.S., M.-L.v.B. and S.M. designed the experiments. K.E. established and performed intravital confocal and epifluorescence microscopy and angiography in neonatal pups and, in cooperation with M.S., performed cardiac output distribution analysis. K.S., S.S. and M.R. planned and performed histological and immunohistochemical analysis. K.S., L.J. and A.W. performed laser-capture microdissection and transmission electron microscopy. M.L. performed RNA analysis, and S.K. performed flow cytometric analysis of cells. E.K. generated the antibody to GpVI. R.A.S., B.I., N.R.E. and J.F. provided the Itga2b−/− and Nfe2−/− mice. O.G.B., J.M. and A.K. planned and performed statistical analysis of the retrospective study in preterm babies. C.S. helped with the acquisition of human DA specimens. K.E. and S.M. analyzed the data and composed the manuscript.

Corresponding author

Correspondence to Steffen Massberg.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–5 and Supplementary Methods (PDF 1729 kb)

Supplementary Movie 1

Platelet adhesion and aggregation in the neonate mouse ductus arteriosus. The neonates were delivered at day 18.5 of gestation (i.e. few hours prior to the expected birth) by abdominal caesarean section and the DA exposed. The adhesion and aggregation of DCF-labeled platelets (green) was monitored in vivo 15 min after birth using a confocal fluorescence laser bundle microscopy (for details see Materials and Methods). In the movie persistent flow as well as platelet aggregate formation in the residual lumen of the contracted DA can be observed. (MOV 196 kb)

Supplementary Movie 2

3D-animation of a contracted, but not fully occluded human DA imaged using 2-photon microscopy. Frozen sections were stained with DAPI (blue) and platelet CD41-specific antibody (red). The white line indicates the luminal surface (visible when exciting collagen autofluorescence). The movie was processed using Adobe After Effects software. (MOV 367 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Echtler, K., Stark, K., Lorenz, M. et al. Platelets contribute to postnatal occlusion of the ductus arteriosus. Nat Med 16, 75–82 (2010). https://doi.org/10.1038/nm.2060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2060

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing