Matrix-insensitive protein assays push the limits of biosensors in medicine

Abstract

Advances in biosensor technologies for in vitro diagnostics have the potential to transform the practice of medicine. Despite considerable work in the biosensor field, there is still no general sensing platform that can be ubiquitously applied to detect the constellation of biomolecules in diverse clinical samples (for example, serum, urine, cell lysates or saliva) with high sensitivity and large linear dynamic range. A major limitation confounding other technologies is signal distortion that occurs in various matrices due to heterogeneity in ionic strength, pH, temperature and autofluorescence. Here we present a magnetic nanosensor technology that is matrix insensitive yet still capable of rapid, multiplex protein detection with resolution down to attomolar concentrations and extensive linear dynamic range. The matrix insensitivity of our platform to various media demonstrates that our magnetic nanosensor technology can be directly applied to a variety of settings such as molecular biology, clinical diagnostics and biodefense.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sensor architecture and assay.
Figure 2: Sensitivity and linear dynamic range (on a log-log plot) of magneto-nanosensors and ELISA.
Figure 3: Magnetonanosensors exhibit matrix-insensitive detection.
Figure 4: Multiplex protein detection in a diversity of media.
Figure 5: Femtomolar-level multiplex tumor marker profiling in xenograft mice.

References

  1. 1

    Srinivas, P.R. et al. Proteomics in early detection of cancer. Clin. Chem. 47, 1901–1911 (2001).

    CAS  PubMed  Google Scholar 

  2. 2

    Lopez, M.F. et al. A novel, high-throughput workflow for discovery and identification of serum carrier protein-bound peptide biomarker candidates in ovarian cancer samples. Clin. Chem. 53, 1067–1074 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Gorelik, E. et al. Multiplexed immunobead-based cytokine profiling for early detection of ovarian cancer. Cancer Epidemiol. Biomarkers Prev. 14, 981–987 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Zheng, Y. et al. A multiparametric panel for ovarian cancer diagnosis, prognosis, and response to chemotherapy. Clin. Cancer Res. 13, 6984–6992 (2007).

    CAS  Article  Google Scholar 

  5. 5

    Heath, J.R. & Davis, M.E. Nanotechnology and cancer. Annu. Rev. Med. 59, 251–265 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Mitchell, P. A perspective on protein microarrays. Nat. Biotechnol. 20, 225–229 (2002).

    CAS  Article  Google Scholar 

  7. 7

    Chan, S.M. et al. Protein microarrays for multiplex analysis of signal transduction pathways. Nat. Med. 10, 1390–1396 (2004).

    CAS  Article  Google Scholar 

  8. 8

    Shingyoji, M. et al. Quantum dots–based reverse phase protein microarray. Talanta 67, 472–478 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Zheng, G. et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Ji, H. et al. Microcantilever biosensors based on conformational change of proteins. Analyst 133, 434–443 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Ghosh, S., Sood, A.K. & Kumar, N. Carbon nanotube flow sensors. Science 299, 1042–1044 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Drummond, T.G., Hill, M.G. & Barton, J.K. Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Cheng, M.M. et al. Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 10, 11–19 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Barnas, J. et al. Novel magnetoresistance effect in layered magnetic structures: Theory and experiment. Phys. Rev. B Condens. Matter 42, 8110–8120 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Prinz, G.A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    CAS  Article  Google Scholar 

  16. 16

    Wolf, S.A. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Baselt, D.R. et al. A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13, 731–739 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Li, G. et al. Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. J. Appl. Phys. 93, 7557–7559 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Graham, D.L. et al. Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: biotechnological applications. J. Appl. Phys. 91, 7786–7788 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Schotter, J. et al. Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens. Bioelectron. 19, 1149–1156 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Millen, R.L. et al. Giant magnetoresistive sensors and superparamagnetic nanoparticles: a chip-scale detection strategy for immunosorbent assays. Anal. Chem. 77, 6581–6587 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Li, G. et al. Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sens. Actuators A Phys. 126, 98–106 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Xu, L. et al. Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens. Bioelectron. 24, 99–103 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Osterfeld, S.J. et al. Multiplex protein assays based on real-time magnetic nanotag sensing. Proc. Natl. Acad. Sci. USA 105, 20637–20640 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Arao, S. et al. Measurement of urinary lactoferrin as a marker of urinary tract infection. J. Clin. Microbiol. 37, 553–557 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Stern, E. et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Georganopoulou, D.G. et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc. Natl. Acad. Sci. USA 102, 2273–2276 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Wu, G. et al. Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat. Biotechnol. 19, 856–860 (2001).

    CAS  Article  Google Scholar 

  29. 29

    Zimmerman, R., Wahren, B. & Edsmyr, F. Assessment of serial CEA determinations in urine of patients with bladder carcinoma. Cancer 46, 1802–1809 (1980).

    CAS  Article  Google Scholar 

  30. 30

    Mukherjee, S. et al. A longitudinal study of unsaturated iron-binding capacity and lactoferrin in unstimulated parotid saliva. Biol. Trace Elem. Res. 57, 1–8 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Chen, Z. et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat. Biotechnol. 26, 1285–1292 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Cui, Y. et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Tom, B.H. et al. Human colonic adenocarcinoma cells. I. Establishment and description of a new line. In Vitro 12, 180–191 (1976).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Cancer Institute grants 1U54CA119367 and N44CM–2009-00011, US National Science Foundation grant ECCS-0801385-000, US Defense Threat Reduction Agency grant HDTRA1-07-1-0030-P00005, the US Defense Advanced Research Projects Agency/Navy Grant N00014–02-1–0807, NCI ICMIC P50 CA114747, the US Department of Veterans Affairs Merit Review B4872, the Canary Foundation and The National Semiconductor Corporation. R.S.G. acknowledges financial support from Stanford Medical School Medical Scientist Training Program and a National Science Foundation graduate research fellowship. C.H.N. acknowledges financial support from the Denmark-American Foundation and the Lundbeck Foundation.

Author information

Affiliations

Authors

Contributions

R.S.G., D.A.H., S.S.G. and S.X.W designed research; R.S.G., D.A.H., C.H.N. and K.E.M. performed research; R.S.G., D.A.H., C.H.N., S.J.O., H.Y., K.E.M., R.J.W., B.M., J.C.L., S.S.G. and S.X.W contributed new reagents and/or analytical tools; R.S.G., D.A.H. and S.X.W analyzed data; S.J.O. and S.X.W. designed the magnetic sensors; R.S.G. and H.Y. developed the biochemistry; and R.S.G., S.S.G. and S.X.W. wrote the paper.

Corresponding authors

Correspondence to Sanjiv S Gambhir or Shan X Wang.

Ethics declarations

Competing interests

Stanford University has licensed part of the magnetic bioassay chip technology contained in this publication to MagArray Inc., an early-stage startup company in Silicon Valley, California. S.X.W., S.S.G., H.Y. and S.J.O. hold financial interests in MagArray in the form of stock options.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–9 (PDF 928 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gaster, R., Hall, D., Nielsen, C. et al. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat Med 15, 1327–1332 (2009). https://doi.org/10.1038/nm.2032

Download citation

Further reading