Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inhibition of calpain increases LIS1 expression and partially rescues in vivo phenotypes in a mouse model of lissencephaly

Abstract

Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. LIS1 (official symbol PAFAH1B1, for platelet-activating factor acetylhydrolase, isoform 1b, subunit 1) was identified as the gene mutated in individuals with lissencephaly, and it was found to regulate cytoplasmic dynein function and localization. Here we show that inhibition or knockdown of calpains protects LIS1 from proteolysis, resulting in the augmentation of LIS1 amounts in Lis1+/− mouse embryonic fibroblast cells and rescue of the aberrant distribution of cytoplasmic dynein, mitochondria and β-COP–positive vesicles. We also show that calpain inhibitors improve neuronal migration of Lis1+/− cerebellar granular neurons. Intraperitoneal injection of the calpain inhibitor ALLN to pregnant Lis1+/− dams rescued apoptotic neuronal cell death and neuronal migration defects in Lis1+/− offspring. Furthermore, in utero knockdown of calpain by short hairpin RNA rescued defective cortical layering in Lis1+/− mice. Thus, calpain inhibition is a potential therapeutic intervention for lissencephaly.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Calpain inhibitors restore LIS1 expression in Lis1+/− MEF cells or DRG neurons.
Figure 2: Rescue of neuronal migration by administration of calpain inhibitors.
Figure 3: Knockdown of calpain by siRNA.
Figure 4: Rescue of defective corticogenesis in Lis1+/− mice by intraperitoneal injection of ALLN.
Figure 5: Rescue of impaired behavior in Lis1+/− mice by intraperitoneal injection of ALLN.

References

  1. Reiner, O. et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein β-subunit–like repeats. Nature 364, 717–721 (1993).

    Article  CAS  Google Scholar 

  2. Gleeson, J.G. et al. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 92, 63–72 (1998).

    Article  CAS  Google Scholar 

  3. Pilz, D.T. et al. LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet. 7, 2029–2037 (1998).

    Article  CAS  Google Scholar 

  4. Hirotsune, S. et al. Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat. Genet. 19, 333–339 (1998).

    Article  CAS  Google Scholar 

  5. Hattori, M., Adachi, H., Tsujimoto, M., Arai, H. & Inoue, K. Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase. Nature 370, 216–218 (1994).

    Article  CAS  Google Scholar 

  6. Vallee, R.B., Tai, C. & Faulkner, N.E. LIS1: cellular function of a disease-causing gene. Trends Cell Biol. 11, 155–160 (2001).

    Article  CAS  Google Scholar 

  7. Wynshaw-Boris, A. Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin. Genet. 72, 296–304 (2007).

    Article  CAS  Google Scholar 

  8. Yamada, M. et al. LIS1 and NDEL1 coordinate the plus-end–directed transport of cytoplasmic dynein. EMBO J. 27, 2471–2483 (2008).

    Article  CAS  Google Scholar 

  9. Sasaki, S. et al. Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality. Mol. Cell. Biol. 25, 7812–7827 (2005).

    Article  CAS  Google Scholar 

  10. Hatten, M.E. Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell Biol. 100, 384–396 (1985).

    Article  CAS  Google Scholar 

  11. Tanaka, T. et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165, 709–721 (2004).

    Article  CAS  Google Scholar 

  12. Toyo-Oka, K. et al. Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration. Hum. Mol. Genet. 14, 3113–3128 (2005).

    Article  CAS  Google Scholar 

  13. Schaller, M.D. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim. Biophys. Acta 1540, 1–21 (2001).

    Article  CAS  Google Scholar 

  14. Parsons, J.T., Martin, K.H., Slack, J.K., Taylor, J.M. & Weed, S.A. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19, 5606–5613 (2000).

    Article  CAS  Google Scholar 

  15. Bhatt, A., Kaverina, I., Otey, C. & Huttenlocher, A. Regulation of focal complex composition and disassembly by the calcium-dependent protease calpain. J. Cell Sci. 115, 3415–3425 (2002).

    CAS  PubMed  Google Scholar 

  16. Cuevas, B.D. et al. MEKK1 regulates calpain-dependent proteolysis of focal adhesion proteins for rear-end detachment of migrating fibroblasts. EMBO J. 22, 3346–3355 (2003).

    Article  CAS  Google Scholar 

  17. Serrano, K. & Devine, D.V. Vinculin is proteolyzed by calpain during platelet aggregation: 95 kDa cleavage fragment associates with the platelet cytoskeleton. Cell Motil. Cytoskeleton 58, 242–252 (2004).

    Article  CAS  Google Scholar 

  18. Franco, S.J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat. Cell Biol. 6, 977–983 (2004).

    Article  CAS  Google Scholar 

  19. Xi, X. et al. Tyrosine phosphorylation of the integrin β3 subunit regulates β3 cleavage by calpain. J. Biol. Chem. 281, 29426–29430 (2006).

    Article  CAS  Google Scholar 

  20. Xie, Z., Sanada, K., Samuels, B.A., Shih, H. & Tsai, L.H. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement and neuronal migration. Cell 114, 469–482 (2003).

    Article  CAS  Google Scholar 

  21. Tsai, L.H., Delalle, I., Caviness, V.S. Jr. Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423 (1994).

    Article  CAS  Google Scholar 

  22. Tsai, L.H., Takahashi, T., Caviness, V.S. Jr. & Harlow, E. Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119, 1029–1040 (1993).

    CAS  PubMed  Google Scholar 

  23. Goll, D.E., Thompson, V.F., Li, H., Wei, W. & Cong, J. The calpain system. Physiol. Rev. 83, 731–801 (2003).

    Article  CAS  Google Scholar 

  24. Suzuki, K., Hata, S., Kawabata, Y. & Sorimachi, H. Structure, activation and biology of calpain. Diabetes 53 Suppl 1, S12–S18 (2004).

    Article  CAS  Google Scholar 

  25. Arthur, J.S., Elce, J.S., Hegadorn, C., Williams, K. & Greer, P.A. Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol. Cell. Biol. 20, 4474–4481 (2000).

    Article  CAS  Google Scholar 

  26. Yingling, J. et al. Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell 132, 474–486 (2008).

    Article  CAS  Google Scholar 

  27. McEvilly, R.J., de Diaz, M.O., Schonemann, M.D., Hooshmand, F. & Rosenfeld, M.G. Transcriptional regulation of cortical neuron migration by POU domain factors. Science 295, 1528–1532 (2002).

    Article  CAS  Google Scholar 

  28. Gressens, P. Pathogenesis of migration disorders. Curr. Opin. Neurol. 19, 135–140 (2006).

    Article  CAS  Google Scholar 

  29. Paylor, R. et al. Impaired learning and motor behavior in heterozygous Pafah1b1 (Lis1) mutant mice. Learn. Mem. 6, 521–537 (1999).

    Article  CAS  Google Scholar 

  30. Amende, I. et al. Gait dynamics in mouse models of Parkinson's disease and Huntington's disease. J. Neuroeng. Rehabil. 2, 20 (2005).

    Article  Google Scholar 

  31. Powell, E., Anch, A.M., Dyche, J., Bloom, C. & Richtert, R.R. The splay angle: A new measure for assessing neuromuscular dysfunction in rats. Physiol. Behav. 67, 819–821 (1999).

    Article  CAS  Google Scholar 

  32. Bi, W. et al. Increased LIS1 expression affects human and mouse brain development. Nat. Genet. 41, 168–177 (2009).

    Article  CAS  Google Scholar 

  33. Lee, M.S. et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364 (2000).

    Article  CAS  Google Scholar 

  34. Patzke, H. & Tsai, L.H. Calpain-mediated cleavage of the cyclin-dependent kinase-5 activator p39 to p29. J. Biol. Chem. 277, 8054–8060 (2002).

    Article  CAS  Google Scholar 

  35. Chae, T. et al. Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).

    Article  CAS  Google Scholar 

  36. Kasai, Y., Inomata, M., Hayashi, M., Imahori, K. & Kawashima, S. Isolation and characterization of monoclonal antibodies against calcium-activated neutral protease with low calcium sensitivity. J. Biochem. 100, 183–190 (1986).

    Article  CAS  Google Scholar 

  37. Lindsay, R.M. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J. Neurosci. 8, 2394–2405 (1988).

    Article  CAS  Google Scholar 

  38. Tabata, H. & Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103, 865–872 (2001).

    Article  CAS  Google Scholar 

  39. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    Article  CAS  Google Scholar 

  40. Yamasaki, N. α-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol. Brain 1, 6 (2008).

    Article  Google Scholar 

  41. Hampton, T.G., Stasko, M.R., Kale, A., Amende, I. & Costa, A.C. Gait dynamics in trisomic mice: quantitative neurological traits of Down syndrome. Physiol. Behav. 82, 381–389 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Kawashima (Tokyo Metropolitan Institute of Medical Science) for providing us with a calpain-specific antibody (1D10A7)36. We thank Y. Funae, H. Iwao, T. Yamauch, M. Muramatsu and Y. Nagai for generous support and encouragement. We also thank Y. Kira, Y. Yabunaka and R. Zako for technical support, H. Nishimura and K. Fujimoto for mouse breeding, T. Bando for in utero injection and K. Nakanishi for behavior study. This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan from the Ministry of Education, Science, Sports and Culture of Japan to M.S. and S.H. This work was also supported by The Sagawa Foundation for Promotion of Cancer Research, The Cell Science Research Foundation, The Japan Spina Bifida & Hydrocephalus Research Foundation, Takeda Science Foundation, The Hoh-ansha Foundation and Knowledge Cluster Initiative (Stage-2) Research Foundation to Shinji Hirotsune and by US National Institutes of Health grants NS41030 and HD47380 to A.W.-B. This work was also supported by a Grant-in-Aid for Scientific Research on Priority Areas -Integrative Brain Research (Shien)- from MEXT and a Grant-in-Aid from Neuroinformatics Japan Center to T.M.

Author information

Authors and Affiliations

Authors

Contributions

M.Y. conducted most of the experiments and wrote the manuscript. Y.Y. conducted most of the experiments. D.M. contributed in vivo analysis of mutant mice. T.T., M.K. and H.U. contributed to reaggregation assay of granular neurons. K.T. and T.M. contributed to behavior analysis. M.S. contributed to in utero injection. H.S. contributed to experiments regarding calpain inhibition. A.W.-B. wrote the manuscript and provided valuable suggestions. S.H. conducted the most of experiments and wrote the manuscript.

Corresponding author

Correspondence to Shinji Hirotsune.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 2776 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yamada, M., Yoshida, Y., Mori, D. et al. Inhibition of calpain increases LIS1 expression and partially rescues in vivo phenotypes in a mouse model of lissencephaly. Nat Med 15, 1202–1207 (2009). https://doi.org/10.1038/nm.2023

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2023

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing