Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Primary cilia can both mediate and suppress Hedgehog pathway–dependent tumorigenesis


Primary cilia are present on most mammalian cells and are implicated in transducing Hedgehog (Hh) signals during development; however, the prevalence of cilia on human tumors remains unclear, and the role of cilia in cancer has not been examined. Here we show that human basal cell carcinomas (BCCs) are frequently ciliated, and we test the role of cilia in BCC by conditionally deleting Kif3a (encoding kinesin family member 3A) or Ift88 (encoding intraflagellar transport protein 88), genes required for ciliogenesis, in two Hh pathway–dependent mouse tumor models. Ciliary ablation strongly inhibited BCC-like tumors induced by an activated form of Smoothened. In contrast, removal of cilia accelerated tumors induced by activated Gli2, a transcriptional effector of Hh signaling. These seemingly paradoxical effects are consistent with a dual role for cilia in mediating both the activation and the repression of the Hh signaling pathway. Our findings demonstrate that cilia function as unique signaling organelles that can either mediate or suppress tumorigenesis depending on the nature of the oncogenic initiating event.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: BCC and normal skin cells possess primary cilia.
Figure 2: Cilia are essential for SmoM2-induced neoplasia.
Figure 3: Loss of cilia accelerates GLI2ΔN-induced neoplasia.
Figure 4: Loss of Ift88 restrains SmoM2-mediated tumorigenesis and promotes GLI2ΔN-induced BCC-like lesions in tamoxifen-treated mice.


  1. 1

    Dahmane, N., Lee, J., Robins, P., Heller, P. & Ruiz i Altaba, A. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 389, 876–881 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Rubin, L.L. & de Sauvage, F.J. Targeting the Hedgehog pathway in cancer. Nat. Rev. Drug Discov. 5, 1026–1033 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Hooper, J.E. & Scott, M.P. Communicating with Hedgehogs. Nat. Rev. Mol. Cell Biol. 6, 306–317 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Reifenberger, J. et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 58, 1798–1803 (1998).

    CAS  PubMed  Google Scholar 

  6. 6

    Wolter, M., Reifenberger, J., Sommer, C., Ruzicka, T. & Reifenberger, G. Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 57, 2581–2585 (1997).

    CAS  PubMed  Google Scholar 

  7. 7

    Tojo, M., Kiyosawa, H., Iwatsuki, K., Nakamura, K. & Kaneko, F. Expression of the GLI2 oncogene and its isoforms in human basal cell carcinoma. Br. J. Dermatol. 148, 892–897 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Oro, A.E. et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 276, 817–821 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Eggenschwiler, J.T. & Anderson, K.V. Cilia and developmental signaling. Annu. Rev. Cell Dev. Biol. 23, 345–373 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Rohatgi, R., Milenkovic, L. & Scott, M.P. Patched1 regulates Hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Corbit, K.C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Liu, A., Wang, B. & Niswander, L.A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 132, 3103–3111 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Haycraft, C.J. et al. Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet. 1, e53 (2005).

    Article  Google Scholar 

  14. 14

    Huangfu, D. & Anderson, K.V. Cilia and hedgehog responsiveness in the mouse. Proc. Natl. Acad. Sci. USA 102, 11325–11330 (2005).

    CAS  Article  Google Scholar 

  15. 15

    May, S.R. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol. 287, 378–389 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Wilson, R.B. & McWhorter, C.A. Isolated flagella in human skin. Election microscopic observations. Lab. Invest. 12, 242–249 (1963).

    CAS  PubMed  Google Scholar 

  17. 17

    Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 66, 10171–10178 (2006).

    CAS  Article  Google Scholar 

  18. 18

    Lehman, J.M., Laag, E., Michaud, E.J. & Yoder, B.K. An essential role for dermal primary cilia in hair follicle morphogenesis. J. Invest. Dermatol. 129, 438–448 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Marszalek, J.R. et al. Genetic evidence for selective transport of opsin and arrestin by kinesin-II in mammalian photoreceptors. Cell 102, 175–187 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Vasioukhin, V., Degenstein, L., Wise, B. & Fuchs, E. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl. Acad. Sci. USA 96, 8551–8556 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87 (2003).

    CAS  Article  Google Scholar 

  22. 22

    St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol. 8, 1058–1068 (1998).

    CAS  Article  Google Scholar 

  23. 23

    Chiang, C. et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev. Biol. 205, 1–9 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Mill, P. et al. Sonic hedgehog–dependent activation of Gli2 is essential for embryonic hair follice development. Genes Dev. 17, 282–294 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Pasca di Magliano, M. et al. Hedgehog-Ras interactions regulate early stages of pancreatic cancer. Genes Dev. 20, 3161–3173 (2006).

    CAS  Article  Google Scholar 

  26. 26

    Schneider, L. et al. PDGFRαα signaling is regulated through the primary cilium in fibroblasts. Curr. Biol. 15, 1861–1866 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Fuchs, E. Skin stem cells: rising to the surface. J. Cell Biol. 180, 273–284 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Yang, S.H. et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/β-catenin signaling. Nat. Genet. 40, 1130–1135 (2008).

    CAS  Article  Google Scholar 

  29. 29

    Nishimura, T. et al. Role of the PAR-3–KIF3 complex in the establishment of neuronal polarity. Nat. Cell Biol. 6, 328–334 (2004).

    CAS  Article  Google Scholar 

  30. 30

    Corbit, K.C. et al. Kif3a constrains β-catenin–dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat. Cell Biol. 10, 70–76 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Haycraft, C.J. et al. Intraflagellar transport is essential for endochondral bone formation. Development 134, 307–316 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Hu, M.C. et al. GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney patterning genes disrupts renal morphogenesis. Development 133, 569–578 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Gerdes, J.M. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nat. Genet. 39, 1350–1360 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Nolan-Stevaux, O. et al. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev. 23, 24–36 (2009).

    CAS  Article  Google Scholar 

  35. 35

    Riobó, N.A., Lu, K., Ai, X., Haines, G.M. & Emerson, C.P. Jr. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc. Natl. Acad. Sci. USA 103, 4505–4510 (2006).

    Article  Google Scholar 

  36. 36

    Dennler, S. et al. Induction of sonic hedgehog mediators by transforming growth factor-β: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res. 67, 6981–6986 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Yauch, R.L. et al. A paracrine requirement for hedgehog signalling in cancer. Nature 455, 406–410 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21, 70–71 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Hui, C.C. & Joyner, A.L. A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat. Genet. 3, 241–246 (1993).

    CAS  Article  Google Scholar 

  40. 40

    Cho, A., Ko, H.W. & Eggenschwiler, J.T. FKBP8 cell-autonomously controls neural tube patterning through a Gli2- and Kif3a-dependent mechanism. Dev. Biol. 321, 27–39 (2008).

    CAS  Article  Google Scholar 

Download references


We thank D. Hanahan, O. Nolan-Stevaux, G. Evan and the members of the Reiter lab for critical reading of this manuscript; K. Thorn and the UCSF Nikon Imaging Center for assistance with confocal microscopy; C. Miller and J.D. Fish for assistance with histology; and R. T. Bronson for help with pathology. We thank T. Li, Harvard Medical School, for rabbit antibody to rootletin; K.V. Anderson, Sloan-Kettering Institute, for Ift172−/− MEFs; S. Scales, Genentech, for mouse antibody to Gli3; J.T. Eggenschwiler, Princeton University, for guinea pig antibody to Gli2; B. Yoder, University of Alabama at Birmingham, for Ift88flox mice; L. Goldstein, University of California, San Diego, for Kif3aflox-knockout mice; and L.V. Goodrich, Harvard Medical School, for Ptch1 riboprobe plasmid. This work was funded by grants from the US National Institutes of Health (RO1AR054396), the Burroughs Wellcome Fund, the Packard Foundation and the Sandler Family Supporting Foundation to J.F.R. A.A.D. acknowledges the support of the US National Institutes of Health (RO1CA087837). S.Y.W. acknowledges the support of the A.P. Giannini Foundation, the Herbert W. Boyer Fund and the American Cancer Society.

Author information




S.Y.W. and J.F.R. designed experiments, performed research, analyzed data and wrote the manuscript. A.D.S. assisted with mouse experiments. P.-L.S., A.N.E., C.K.B., E.H.E. and A.A.D. provided reagents and technical advice.

Corresponding author

Correspondence to Jeremy F Reiter.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–10 and Supplementary Methods (PDF 1232 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wong, S., Seol, A., So, PL. et al. Primary cilia can both mediate and suppress Hedgehog pathway–dependent tumorigenesis. Nat Med 15, 1055–1061 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing