Impaired Wnt–β-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy


Cystic kidney disease represents a major cause of end-stage renal disease, yet the molecular mechanisms of pathogenesis remain largely unclear. Recent emphasis has been placed on a potential role for canonical Wnt signaling, but investigation of this pathway in adult renal homeostasis is lacking. Here we provide evidence of a previously unidentified canonical Wnt activity in adult mammalian kidney homeostasis, the loss of which leads to cystic kidney disease. Loss of the Jouberin (Jbn) protein in mouse leads to the cystic kidney disease nephronophthisis, owing to an unexpected decrease in endogenous Wnt activity. Jbn interacts with and facilitates β-catenin nuclear accumulation, resulting in positive modulation of downstream transcription. Finally, we show that Jbn is required in vivo for a Wnt response to injury and renal tubule repair, the absence of which triggers cystogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Loss of Jbn leads to nephronophthisis pathology.
Figure 2: Jbn is required for Wnt activity in adult mouse kidney.
Figure 3: Ahi1 shows nonallelic noncomplementation with Lrp6.
Figure 4: Jbn is a positive modulator of Wnt signaling downstream of β-catenin stabilization.
Figure 5: Jbn facilitates β-catenin nuclear accumulation.
Figure 6: Ahi1−/− mice show defective recovery from renal injury.


  1. 1

    Harris, P.C. Molecular basis of polycystic kidney disease: PKD1, PKD2 and PKHD1. Curr. Opin. Nephrol. Hypertens. 11, 309–314 (2002).

    Article  Google Scholar 

  2. 2

    Hildebrandt, F. & Zhou, W. Nephronophthisis-associated ciliopathies. J. Am. Soc. Nephrol. 18, 1855–1871 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat. Genet. 37, 537–543 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Bergmann, C. et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber–like syndrome, situs inversus,and renal-hepatic-pancreatic dysplasia. Am. J. Hum. Genet. 82, 959–970 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Saadi-Kheddouci, S. et al. Early development of polycystic kidney disease in transgenic mice expressing an activated mutant of the β-catenin gene. Oncogene 20, 5972–5981 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Qian, C.N. et al. Cystic renal neoplasia following conditional inactivation of apc in mouse renal tubular epithelium. J. Biol. Chem. 280, 3938–3945 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Marose, T.D., Merkel, C.E., McMahon, A.P. & Carroll, T.J. β-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev. Biol. 314, 112–126 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Pinson, K.I., Brennan, J., Monkley, S., Avery, B.J. & Skarnes, W.C. An LDL-receptor–related protein mediates Wnt signalling in mice. Nature 407, 535–538 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Ferland, R.J. et al. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat. Genet. 36, 1008–1013 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Dixon-Salazar, T. et al. Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Am. J. Hum. Genet. 75, 979–987 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Louie, C.M. & Gleeson, J.G. Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum. Mol. Genet. 14 Spec No. 2, R235–R242 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Utsch, B. et al. Identification of the first AHI1 gene mutations in nephronophthisis-associated Joubert syndrome. Pediatr. Nephrol. 21, 32–35 (2006).

    Article  Google Scholar 

  13. 13

    Rauchman, M.I., Nigam, S.K., Delpire, E. & Gullans, S.R. An osmotically tolerant inner medullary collecting duct cell line from an SV40 transgenic mouse. Am. J. Physiol. 265, F416–F424 (1993).

    CAS  Google Scholar 

  14. 14

    Eley, L. et al. Jouberin localizes to collecting ducts and interacts with nephrocystin-1. Kidney Int. 74, 1139–1149 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Davison, A.M. et al. Oxford Textbook of Clinical Nephrology Section 16.3 (Oxford University Press, Oxford, 2005).

  16. 16

    Faraggiana, T., Malchiodi, F., Prado, A. & Churg, J. Lectin-peroxidase conjugate reactivity in normal human kidney. J. Histochem. Cytochem. 30, 451–458 (1982).

    CAS  Article  Google Scholar 

  17. 17

    Patel, V. et al. Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia. Hum. Mol. Genet. 17, 1578–1590 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Attanasio, M. et al. Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nat. Genet. 39, 1018–1024 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Kim, Y.S. et al. Kruppel-like zinc finger protein Glis2 is essential for the maintenance of normal renal functions. Mol. Cell. Biol. 28, 2358–2367 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Krishnan, R., Eley, L. & Sayer, J.A. Urinary concentration defects and mechanisms underlying nephronophthisis. Kidney Blood Press. Res. 31, 152–162 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Parisi, M.A. et al. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J. Med. Genet. 43, 334–339 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Badano, J.L., Mitsuma, N., Beales, P.L. & Katsanis, N. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genomics Hum. Genet. 7, 125–148 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Kim, Y.S., Kang, H.S. & Jetten, A.M. The Kruppel-like zinc finger protein Glis2 functions as a negative modulator of the Wnt/β-catenin signaling pathway. FEBS Lett. 581, 858–864 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Zhang, K. et al. PKD1 inhibits cancer cells migration and invasion via Wnt signaling pathway in vitro. Cell Biochem. Funct. 25, 767–774 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Kim, E. et al. The polycystic kidney disease 1 gene product modulates Wnt signaling. J. Biol. Chem. 274, 4947–4953 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Zheng, R. et al. Polycystin-1 induced apoptosis and cell cycle arrest in G0/G1 phase in cancer cells. Cell Biol. Int. 32, 427–435 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Lal, M. et al. Polycystin-1 C-terminal tail associates with β-catenin and inhibits canonical Wnt signaling. Hum. Mol. Genet. 17, 3105–3117 (2008).

    CAS  Article  Google Scholar 

  28. 28

    DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999).

    CAS  PubMed Central  Google Scholar 

  29. 29

    Iglesias, D.M. et al. Canonical WNT signaling during kidney development. Am. J. Physiol. Renal Physiol. 293, F494–F500 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Weiss, D.J., Liggitt, D. & Clark, J.G. Histochemical discrimination of endogenous mammalian β-galactosidase activity from that resulting from lac-Z gene expression. Histochem. J. 31, 231–236 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Duffield, J.S. et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow–derived stem cells. J. Clin. Invest. 115, 1743–1755 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Maretto, S. et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl. Acad. Sci. USA 100, 3299–3304 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Filali, M., Cheng, N., Abbott, D., Leontiev, V. & Engelhardt, J.F. Wnt-3A/β-catenin signaling induces transcription from the LEF-1 promoter. J. Biol. Chem. 277, 33398–33410 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Jho, E.H. et al. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 22, 1172–1183 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Niida, A. et al. DKK1, a negative regulator of Wnt signaling, is a target of the β-catenin/TCF pathway. Oncogene 23, 8520–8526 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Hovanes, K. β-catenin–sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat. Genet. 28, 53–57 (2001).

    CAS  Google Scholar 

  37. 37

    Li, C.M. et al. CTNNB1 mutations and overexpression of Wnt/β-catenin target genes in WT1-mutant Wilms' tumors. Am. J. Pathol. 165, 1943–1953 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Takada, S. et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8, 174–189 (1994).

    CAS  Article  Google Scholar 

  39. 39

    Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    CAS  Article  Google Scholar 

  40. 40

    Kaykas, A. et al. Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nat. Cell Biol. 6, 52–58 (2004).

    CAS  Article  Google Scholar 

  41. 41

    Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    CAS  Article  Google Scholar 

  42. 42

    Willert, K. & Nusse, R. β-catenin: a key mediator of Wnt signaling. Curr. Opin. Genet. Dev. 8, 95–102 (1998).

    CAS  Article  Google Scholar 

  43. 43

    van Noort, M., Meeldijk, J., van der Zee, R., Destree, O. & Clevers, H. Wnt signaling controls the phosphorylation status of β-catenin. J. Biol. Chem. 277, 17901–17905 (2002).

    CAS  Article  Google Scholar 

  44. 44

    Cokol, M., Nair, R. & Rost, B. Finding nuclear localization signals. EMBO Rep. 1, 411–415 (2000).

    CAS  Article  Google Scholar 

  45. 45

    Surendran, K., Schiavi, S. & Hruska, K.A. Wnt-dependent β-catenin signaling is activated after unilateral ureteral obstruction, and recombinant secreted frizzled-related protein 4 alters the progression of renal fibrosis. J. Am. Soc. Nephrol. 16, 2373–2384 (2005).

    CAS  Article  Google Scholar 

  46. 46

    Meldrum, K.K., Meldrum, D.R., Meng, X., Ao, L. & Harken, A.H. TNF-α–dependent bilateral renal injury is induced by unilateral renal ischemia-reperfusion. Am. J. Physiol. Heart Circ. Physiol. 282, H540–H546 (2002).

    CAS  Article  Google Scholar 

  47. 47

    Jauregui, A.R., Nguyen, K.C., Hall, D.H. & Barr, M.M. The Caenorhabditis elegans nephrocystins act as global modifiers of cilium structure. J. Cell Biol. 180, 973–988 (2008).

    CAS  Article  Google Scholar 

  48. 48

    Schmidt-Ott, K.M. & Barasch, J. WNT/β-catenin signaling in nephron progenitors and their epithelial progeny. Kidney Int. 74, 1004–1008 (2008).

    CAS  Article  Google Scholar 

  49. 49

    Kuure, S., Popsueva, A., Jakobson, M., Sainio, K. & Sariola, H. Glycogen synthase kinase-3 inactivation and stabilization of β-catenin induce nephron differentiation in isolated mouse and rat kidney mesenchymes. J. Am. Soc. Nephrol. 18, 1130–1139 (2007).

    CAS  Article  Google Scholar 

  50. 50

    Park, J.S., Valerius, M.T. & McMahon, A.P. Wnt/β-catenin signaling regulates nephron induction during mouse kidney development. Development 134, 2533–2539 (2007).

    CAS  Article  Google Scholar 

  51. 51

    Osafune, K., Takasato, M., Kispert, A., Asashima, M. & Nishinakamura, R. Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133, 151–161 (2006).

    CAS  Article  Google Scholar 

  52. 52

    Saburi, S. et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat. Genet. 40, 1010–1015 (2008).

    CAS  Article  Google Scholar 

  53. 53

    Kishimoto, N., Cao, Y., Park, A. & Sun, Z. Cystic kidney gene seahorse regulates cilia-mediated processes and Wnt pathways. Dev. Cell 14, 954–961 (2008).

    CAS  Article  Google Scholar 

  54. 54

    Bonventre, J.V. & Zuk, A. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 66, 480–485 (2004).

    CAS  Article  Google Scholar 

  55. 55

    Bonventre, J.V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol. 14 Suppl 1, S55–S61 (2003).

    Article  Google Scholar 

  56. 56

    Davenport, J.R. et al. Disruption of intraflagellar transport in adult mice leads to obesity and slow-onset cystic kidney disease. Curr. Biol. 17, 1586–1594 (2007).

    CAS  Article  Google Scholar 

  57. 57

    Piontek, K., Menezes, L.F., Garcia-Gonzalez, M.A., Huso, D.L. & Germino, G.G. A critical developmental switch defines the kinetics of kidney cyst formation after loss of Pkd1. Nat. Med. 13, 1490–1495 (2007).

    CAS  Article  Google Scholar 

  58. 58

    Calvet, J.P. Injury and development in polycystic kidney disease. Curr. Opin. Nephrol. Hypertens. 3, 340–348 (1994).

    CAS  Article  Google Scholar 

Download references


We are grateful to members of the Gleeson lab for technical expertise and feedback and the Nigam lab for helpful kidney-related discussions and reagents, as well as B. Brinkman and the UCSD Neuroscience Microscopy Core. We also thank the K. Kaushansky, M. Karin, and P.L. Mellon labs, as well as E.L. Stone for technical expertise. We are grateful to S. Piccolo at the Departments of Histology, Microbiology and Medical Biotechnologies, University of Padua, for the BATGAL mice. We thank S. Pleasure at the Department of Neurology, University of California–San Francisco, for Lrp6-mutant mice. We also thank M.G. Rosenfeld at the School of Medicine, UCSD, for the β-catΔN construct and R.T. Moon at the Department of Pharmacology, University of Washington, for the Super Topflash construct. M.A.L. and C.M.L received support from the US National Institutes of Health–National Institute of General Medical Sciences–funded UCSD Genetics Training Program (T32 GM08666). This work was supported by the US National Institutes of Health and the Burroughs Wellcome Fund in Translational Research (J.G.G.). J.G.G. is an investigator with Howard Hughes Medical Institute.

Author information




M.A.L. designed the experimental approach, conducted the experiments and wrote the manuscript. J.G.G. supervised the project and experimental approach, interpreted data and contributed to manuscript preparation. C.M.L. designed and generated the Ahi1−/− mouse mutant and provided feedback. J.L.S. generated mutant constructs and assisted in microscopy. L.S. contributed to in vitro localization experiments. M.D. contributed to IRI experiments. S.K.N. provided feedback regarding renal characterization and manuscript preparation. K.W. provided feedback and reagents for in vitro Wnt assays.

Corresponding author

Correspondence to Joseph G Gleeson.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 1566 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lancaster, M., Louie, C., Silhavy, J. et al. Impaired Wnt–β-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nat Med 15, 1046–1054 (2009).

Download citation

Further reading