A granulocyte-macrophage colony–stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties

Abstract

We have previously shown that a granulocyte-macrophage colony–stimulating factor (GM-CSF) and interleukin-15 (IL-15) 'fusokine' (GIFT15) exerts immune suppression via aberrant signaling through the IL-15 receptor on lymphomyeloid cells. We show here that ex vivo GIFT15 treatment of mouse splenocytes generates suppressive regulatory cells of B cell ontogeny (hereafter called GIFT15 Breg cells). Arising from CD19+ B cells, GIFT15 Breg cells express major histocompatibility complex class I (MHCI) and MHCII, surface IgM and IgD, and secrete IL-10, akin to previously described B10 and T2-MZP Breg cells, but lose expression of the transcription factor PAX5, coupled to upregulation of CD138 and reciprocal suppression of CD19. Mice with experimental autoimmune encephalomyelitis went into complete remission after intravenous infusion of GIFT15 Breg cells paralleled by suppressed neuroinflammation. The clinical effect was abolished when GIFT15 Breg cells were derived from mμMT (lacking B cells), MHCII-knockout, signal transducer and activator of transcription-6 (STAT-6)-knockout, IL-10–knockout or allogeneic splenocytes, consistent with a pivotal role for MHCII and IL-10 by sygeneic B cells for the observed therapeutic effect. We propose that autologous GIFT15 Breg cells may serve as a new treatment for autoimmune ailments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: GIFT15 Breg cell phenotype.
Figure 2: GIFT15 leads to the development of Breg cells.
Figure 3: The biochemical responses of GIFT15 Breg cells.
Figure 4: Bystander inhibition by GIFT15 Breg cells.
Figure 5: Therapeutic effects of GIFT15 Breg cells.
Figure 6: Breg cells are highly efficient in reversing EAE.

References

  1. 1

    Kuhlmann, T. et al. Continued administration of ciliary neurotrophic factor protects mice from inflammatory pathology in experimental autoimmune encephalomyelitis. Am. J. Pathol. 169, 584–598 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Jack, C., Ruffini, F., Bar-Or, A. & Antel, J.P. Microglia and multiple sclerosis. J. Neurosci. Res. 81, 363–373 (2005).

    CAS  Article  Google Scholar 

  3. 3

    O'Connor, K.C., Bar-Or, A. & Hafler, D.A. The neuroimmunology of multiple sclerosis: possible roles of T and B lymphocytes in immunopathogenesis. J. Clin. Immunol. 21, 81–92 (2001).

    CAS  Article  Google Scholar 

  4. 4

    The IFNB Multiple Sclerosis Study Group. Interferon β-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. Neurology 43, 655–661 (1993).

  5. 5

    Panitch, H., Miller, A., Paty, D. & Weinshenker, B. Interferon β-1b in secondary progressive MS: results from a 3-year controlled study. Neurology 63, 1788–1795 (2004).

    Article  Google Scholar 

  6. 6

    Johnson, K.P. et al. Copolymer 1 reduces relapse rate and improves disability in relapsingremitting multiple sclerosis: results of a phase III multicenter, double-blind placebo-controlled trial. The Copolymer 1 Multiple Sclerosis Study Group. Neurology 45, 1268–1276 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Hartung, H.P. et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet 360, 2018–2025 (2002).

    Article  Google Scholar 

  8. 8

    Krapf, H. et al. Effect of mitoxantrone on MRI in progressive MS: results of the MIMS trial. Neurology 65, 690–695 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Polman, C.H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Dhib-Jalbut, S. et al. Effect of combined IFNβ-1a and glatiramer acetate therapy on GA-specific T cell responses in multiple sclerosis. Mult. Scler. 8, 485–491 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Arnold, D.L. et al. Glatiramer acetate after mitoxantrone induction improves MRI markers of lesion volume and permanent tissue injury in MS. J. Neurol. 255, 1473–1478 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Stern, J.N. et al. Amino acid copolymerspecific IL-10–secreting regulatory T cells that ameliorate autoimmune diseases in mice. Proc. Natl. Acad. Sci. USA 105, 5172–5176 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Giorgini, A. & Noble, A. Blockade of chronic graft-versus-host disease by alloantigeninduced CD4+CD25+Foxp3+ regulatory T cells in nonlymphopenic hosts. J. Leukoc. Biol. 82, 1053–1061 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Karim, M., Feng, G., Wood, K.J. & Bushell, A.R. CD25+CD4+ regulatory T cells generated by exposure to a model protein antigen prevent allograft rejection: antigen-specific reactivation in vivo is critical for bystander regulation. Blood 105, 4871–4877 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Fassas, A. et al. Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J. Neurol. 249, 1088–1097 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Rafei, M. et al. GM-CSF and IL-15 fusokine leads to paradoxical immunosuppression in vivo via asymmetrical JAK/STAT signaling through the IL-15 receptor complex. Blood 109, 2234–2242 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 14, 779–790 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Prêle, C.M. et al. SOCS1 Regulates the IFN but Not NFκBpPathway in TLR-stimulated human monocytes and macrophages. J. Immunol. 181, 8018–8026 (2008).

    Article  Google Scholar 

  19. 19

    Fillatreau, S., Sweenie, C.H., McGeachy, M.J., Gray, D. & Anderton, S.M. B cells regulate autoimmunity by provision of IL-10. Nat. Immunol. 3, 944–950 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K.A. B cell–deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423–426 (1991).

    CAS  Article  Google Scholar 

  21. 21

    Wolf, S.D., Dittel, B.N., Hardardottir, F. & Janeway, C.A. Jr. Experimental autoimmune encephalomyelitis induction in genetically B cell-deficient mice. J. Exp. Med. 184, 2271–2278 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Matsushita, T., Yanaba, K., Bouaziz, J.D., Fujimoto, M. & Tedder, T.F. Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression. J. Clin. Invest. 118, 3420–3430 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Yanaba, K. et al. A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28, 639–650 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Evans, J.G. et al. Novel suppressive function of transitional 2 B cells in experimental arthritis. J. Immunol. 178, 7868–7878 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Mauri, C., Mars, L.T. & Londei, M. Therapeutic activity of agonistic monoclonal antibodies against CD40 in a chronic autoimmune inflammatory process. Nat. Med. 6, 673–679 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Lau, A.W., Biester, S., Cornall, R.J. & Forrester, J.V. Lipopolysaccharide-activated IL-10–secreting dendritic cells suppress experimental autoimmune uveoretinitis by MHCII-dependent activation of CD62L-expressing regulatory T cells. J. Immunol. 180, 3889–3899 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Brummel, R. & Lenert, P. Activation of marginal zone B cells from lupus mice with type A(D) CpG-oligodeoxynucleotides. J. Immunol. 174, 2429–2434 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Fornek, J.L. et al. Critical role for Stat3 in T-dependent terminal differentiation of IgG B cells. Blood 107, 1085–1091 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Bouaziz, J.D., Yanaba, K. & Tedder, T.F. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol. Rev. 224, 201–214 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Singh, A.K. et al. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1801–1811 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Mann, M.K., Maresz, K., Shriver, L.P., Tan, Y. & Dittel, B.N. B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J. Immunol. 178, 3447–3456 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R.S. & Bhan, A.K. Chronic intestinal inflammatory condition generates IL-10–producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Singh, A. et al. Regulatory role of B cells in a murine model of allergic airway disease. J. Immunol. 180, 7318–7326 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Jamin, C. et al. Regulatory B lymphocytes in humans: A potential role in autoimmunity. Arthritis Rheum. 58, 1900–1906 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Rafei, M. et al. Selective inhibition of CCR2 expressing cells in experimental autoimmune encephalomyelitis by a GM-CSF_MCP1 fusokine. J. Immunol. 182, 2620–2627 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

M.R. is a recipient of a Fonds de Recherches en Santé du Québec Scholarship, and J.G. is a Fonds de Recherches en Santé du Québec chercheur-boursier sénior. C.P. holds a Canada Research Chair in Immunobiology. This work was supported by the Canadian Institute of Health Research grant MOP-15017.

Author information

Affiliations

Authors

Contributions

M.R. designed the research plan, performed most experiments, analyzed results and wrote the manuscript. J.H. performed APC assays. S.Z. induced EAE. M.L. performed cell culture and ELISAs. K.F. and E.B. handled mice. M.-N.B. performed CFSE experiments. Y.K.Y. performed cell death and cell cycle experiments. C.P. analyzed results and provided guidance. J.G. designed the research plan, analyzed results and wrote the manuscript.

Corresponding author

Correspondence to Jacques Galipeau.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rafei, M., Hsieh, J., Zehntner, S. et al. A granulocyte-macrophage colony–stimulating factor and interleukin-15 fusokine induces a regulatory B cell population with immune suppressive properties. Nat Med 15, 1038–1045 (2009). https://doi.org/10.1038/nm.2003

Download citation

Further reading