Normalization of obesity-associated insulin resistance through immunotherapy

Abstract

Obesity and its associated metabolic syndromes represent a growing global challenge, yet mechanistic understanding of this pathology and current therapeutics are unsatisfactory. We discovered that CD4+ T lymphocytes, resident in visceral adipose tissue (VAT), control insulin resistance in mice with diet-induced obesity (DIO). Analyses of human tissue suggest that a similar process may also occur in humans. DIO VAT-associated T cells show severely biased T cell receptor Vα repertoires, suggesting antigen-specific expansion. CD4+ T lymphocyte control of glucose homeostasis is compromised in DIO progression, when VAT accumulates pathogenic interferon-γ (IFN-γ)-secreting T helper type 1 (TH1) cells, overwhelming static numbers of TH2 (CD4+GATA-binding protein-3 (GATA-3)+) and regulatory forkhead box P3 (Foxp3)+ T cells. CD4+ (but not CD8+) T cell transfer into lymphocyte-free Rag1-null DIO mice reversed weight gain and insulin resistance, predominantly through TH2 cells. In obese WT and ob/ob (leptin-deficient) mice, brief treatment with CD3-specific antibody or its F(ab′)2 fragment, reduces the predominance of TH1 cells over Foxp3+ cells, reversing insulin resistance for months, despite continuation of a high-fat diet. Our data suggest that the progression of obesity-associated metabolic abnormalities is under the pathophysiological control of CD4+ T cells. The eventual failure of this control, with expanding adiposity and pathogenic VAT T cells, can successfully be reversed by immunotherapy.

Figure 1: Phenotype of fat-associated T cells.
Figure 2: Impact of lymphocyte deficiency on weight gain, fat distribution, glucose tolerance and insulin resistance.
Figure 3: CD4+ T cell grafts reverse obesity-associated metabolic abnormalities in Rag1-null mice.
Figure 4: CD4+Foxp3 T cells reverse metabolic abnormalities after transfer.
Figure 5: CD3-specific antibody and its F(ab′)2 fragment improve obesity-induced insulin resistance.
Figure 6: F(ab′)2 therapy alters VAT-resident macrophage phenotype.

References

  1. 1

    Kahn, S.E., Hull, R.L. & Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Déspres, J.P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).

    Article  Google Scholar 

  3. 3

    Dahabreh, I.J. Meta-analysis of rare events: an update and sensitivity analysis of cardiovascular events in randomized trials of rosiglitazone. Clin. Trials 5, 116–120 (2008).

    Article  Google Scholar 

  4. 4

    Hanson, R.L., Imperatore, G., Bennett, P.H. & Knowler, W.C. Components of the 'metabolic syndrome' and incidence of type 2 diabetes. Diabetes 51, 3120–3127 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Kim, J.Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Furuhashi, M. et al. Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J. Clin. Invest. 118, 2640–2650 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Kanda, H. et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116, 1494–1505 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Yuan, M. et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science 293, 1673–1677 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Weisberg, S.P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Odegaard, J.I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Tiemessen, M.M. et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl. Acad. Sci. USA 104, 19446–19451 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Martinez, F.O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Cintra, D.E. et al. Interleukin-10 is a protective factor against diet-induced insulin resistance in liver. J. Hepatol. 48, 628–637 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Lumeng, C.N., Bodzin, J.L. & Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Rausch, M.E., Weisberg, S., Vardhana, P. & Tortoriello, D.V. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int. J. Obes. (Lond.) 32, 451–463 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Kintscher, U. et al. T-lymphocyte infiltration in visceral adipose tissue. a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 1304–1310 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Wu, H. et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 115, 1029–1038 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Baker, F.J., Lee, M., Chien, Y.H. & Davis, M.M. Restricted islet-cell reactive T cell repertoire of early pancreatic islet infiltrates in NOD mice. Proc. Natl. Acad. Sci. USA 99, 9374–9379 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Turner, S.J., Doherty, P.C., McCluskey, J. & Rossjohn, J. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6, 883–894 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Oksenberg, J.R. et al. Limited heterogeneity of rearranged T-cell receptor V α transcripts in brains of multiple sclerosis patients. Nature 345, 344–346 (1990).

    CAS  Article  Google Scholar 

  22. 22

    Jenkins, R.N., Nikaein, A., Zimmermann, A., Meek, K. & Lipsky, P.E. T cell receptor V β gene bias in rheumatoid arthritis. J. Clin. Invest. 92, 2688–2701 (1993).

    CAS  Article  Google Scholar 

  23. 23

    Belghith, M. et al. TGF-β–dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat. Med. 9, 1202–1208 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Caspar-Bauguil, S. et al. Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett. 579, 3487–3492 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Szabo, S.J. et al. A novel transcription factor, T-bet, directs TH1 lineage commitment. Cell 100, 655–669 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    CAS  Article  Google Scholar 

  27. 27

    Padovan, E. et al. Expression of two T cell receptor α chains: dual receptor T cells. Science 262, 422–424 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Fontenot, J.D., Rasmussen, J.P., Gavin, M.A. & Rudensky, A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Awasthi, A. et al. A dominant function for interleukin 27 in generating interleukin 10–producing anti-inflammatory T cells. Nat. Immunol. 8, 1380–1389 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Jankovic, D. et al. Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4+ lymphocytes with a TH2 cytokine profile. J. Immunol. 164, 3047–3055 (2000).

    CAS  Article  Google Scholar 

  31. 31

    Shimoda, K. et al. Lack of IL-4-induced TH2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    CAS  Article  Google Scholar 

  32. 32

    Kaplan, M.H., Schindler, U., Smiley, S.T. & Grusby, M.J. Stat6 is required for mediating responses to IL-4 and for development of TH2 cells. Immunity 4, 313–319 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Bisikirska, B., Colgan, J., Luban, J., Bluestone, J.A. & Herold, K.C. TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J. Clin. Invest. 115, 2904–2913 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Chatenoud, L. & Bluestone, J.A. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nat. Rev. Immunol. 7, 622–632 (2007).

    CAS  Article  Google Scholar 

  35. 35

    Alegre, M. et al. Acute toxicity of anti-CD3 monoclonal antibody in mice: a model for OKT3 first dose reactions. Transplant. Proc. 22, 1920–1921 (1990).

    CAS  PubMed  Google Scholar 

  36. 36

    Alegre, M. et al. Hypothermia and hypoglycemia induced by anti-CD3 monoclonal antibody in mice: role of tumor necrosis factor. Eur. J. Immunol. 20, 707–710 (1990).

    CAS  Article  Google Scholar 

  37. 37

    Claycombe, K., King, L.E. & Fraker, P.J. A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc. Natl. Acad. Sci. USA 105, 2017–2021 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Zeyda, M. & Stulnig, T.M. Adipose tissue macrophages. Immunol. Lett. 112, 61–67 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Rocha, V.Z. et al. Interferon-γ, a TH1 cytokine, regulates fat inflammation: a role for adaptive immunity in obesity. Circ. Res. 103, 467–476 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Herold, K.C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    CAS  Article  Google Scholar 

  42. 42

    Steffens, S. & Mach, F. Adiponectin and adaptive immunity: linking the bridge from obesity to atherogenesis. Circ. Res. 102, 140–142 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Macia, L. et al. Impairment of dendritic cell functionality and steady-state number in obese mice. J. Immunol. 177, 5997–6006 (2006).

    CAS  Article  Google Scholar 

  44. 44

    Kümpers, P. et al. Leptin is a coactivator of TGF-β in unilateral ureteral obstructive kidney disease. Am. J. Physiol. Renal Physiol. 293, F1355–F1362 (2007).

    Article  Google Scholar 

  45. 45

    Perruche, S. et al. CD3-specific antibody–induced immune tolerance involves transforming growth factor-β from phagocytes digesting apoptotic T cells. Nat. Med. 14, 528–535 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Strissel, K.J. et al. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 56, 2910–2918 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Canadian Institutes of Health Research. Y.C. and G.P. were recipients of scholarships from the Canadian Institutes of Health Research and the Banting & Best Foundation. Antibodies to OT2 TCR heavy and light chain were a gift from D. Philpott (University of Toronto).

Author information

Affiliations

Authors

Contributions

S.W. and Y.C. conceived of the study and carried out the bulk of the experiments. G.P., D.T., H.T. and Y.M. performed a number of mouse experiments. R.D., Y.W. and J.Z. provided much of the TCR material, F.M. helped with adipocyte analysis, J.B. and D.D. provided metabolic studies, E.E. and D.W. generated the bulk of human data, S.W. and H.-M.D. wrote the manuscript, and H.-M.D. financed and supervised the project and the peer review process.

Corresponding author

Correspondence to H.-Michael Dosch.

Ethics declarations

Competing interests

H.M.D. holds shares in Afference Therapeutics, Inc., a start-up biotech corporation.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–7 (PDF 1088 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Winer, S., Chan, Y., Paltser, G. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15, 921–929 (2009). https://doi.org/10.1038/nm.2001

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing