Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers

Abstract

Basal-like breast cancers arising in women carrying mutations in the BRCA1 gene, encoding the tumor suppressor protein BRCA1, are thought to develop from the mammary stem cell. To explore early cellular changes that occur in BRCA1 mutation carriers, we have prospectively isolated distinct epithelial subpopulations from normal mammary tissue and preneoplastic specimens from individuals heterozygous for a BRCA1 mutation. We describe three epithelial subsets including basal stem/progenitor, luminal progenitor and mature luminal cells. Unexpectedly, we found that breast tissue from BRCA1 mutation carriers harbors an expanded luminal progenitor population that shows factor-independent growth in vitro. Moreover, gene expression profiling revealed that breast tissue heterozygous for a BRCA1 mutation and basal breast tumors were more similar to normal luminal progenitor cells than any other subset, including the stem cell–enriched population. The c-KIT tyrosine kinase receptor (encoded by KIT) emerged as a key marker of luminal progenitor cells and was more highly expressed in BRCA1-associated preneoplastic tissue and tumors. Our findings suggest that an aberrant luminal progenitor population is a target for transformation in BRCA1-associated basal tumors .

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: CD49f and EpCAM define distinct subpopulations in the human mammary epithelium.
Figure 2: CD49fhiEpCAM cells have in vivo repopulating capacity.
Figure 3: Luminal progenitor cells from BRCA1 mutation carriers show factor-independent growth in vitro.
Figure 4: Comparison of gene expression profiles of normal human mammary epithelial and stromal subsets with the major subtypes of breast cancer and with preneoplastic tissue from BRCA1 mutation carriers.

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nat. Rev. Cancer 4, 814–819 (2004).

    CAS  Article  PubMed  Google Scholar 

  2. Herschkowitz, J.I. et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8, R76 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    CAS  Article  PubMed  Google Scholar 

  4. Foulkes, W.D. BRCA1 functions as a breast stem cell regulator. J. Med. Genet. 41, 1–5 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Ganesan, S. et al. Abnormalities of the inactive X chromosome are a common feature of BRCA1 mutant and sporadic basal-like breast cancer. Cold Spring Harb. Symp. Quant. Biol. 70, 93–97 (2005).

    CAS  Article  PubMed  Google Scholar 

  6. Narod, S.A. & Foulkes, W.D. BRCA1 and BRCA2: 1994 and beyond. Nat. Rev. Cancer 4, 665–676 (2004).

    CAS  Article  PubMed  Google Scholar 

  7. Venkitaraman, A.R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171–182 (2002).

    CAS  Article  PubMed  Google Scholar 

  8. Xu, X. et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat. Genet. 22, 37–43 (1999).

    CAS  Article  PubMed  Google Scholar 

  9. Bouwman, P. & Jonkers, J. Mouse models for BRCA1 associated tumorigenesis: from fundamental insights to preclinical utility. Cell Cycle 7, 2647–2653 (2008).

    CAS  Article  PubMed  Google Scholar 

  10. Furuta, S. et al. Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proc. Natl. Acad. Sci. USA 102, 9176–9181 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Kubista, M., Rosner, M., Kubista, E., Bernaschek, G. & Hengstschlager, M. Brca1 regulates in vitro differentiation of mammary epithelial cells. Oncogene 21, 4747–4756 (2002).

    CAS  Article  PubMed  Google Scholar 

  12. Liu, S. et al. BRCA1 regulates human mammary stem/progenitor cell fate. Proc. Natl. Acad. Sci. USA 105, 1680–1685 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Clarke, R.B. et al. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev. Biol. 277, 443–456 (2005).

    CAS  Article  PubMed  Google Scholar 

  14. Dontu, G. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 17, 1253–1270 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Gudjonsson, T. et al. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev. 16, 693–706 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Raouf, A. et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3, 109–118 (2008).

    CAS  Article  PubMed  Google Scholar 

  17. Stingl, J., Eaves, C.J., Zandieh, I. & Emerman, J.T. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat. 67, 93–109 (2001).

    CAS  Article  PubMed  Google Scholar 

  18. Villadsen, R. et al. Evidence for a stem cell hierarchy in the adult human breast. J. Cell Biol. 177, 87–101 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Eirew, P. et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat. Med. 14, 1384–1389 (2008).

    CAS  Article  PubMed  Google Scholar 

  21. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    CAS  Article  PubMed  Google Scholar 

  22. Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    CAS  Article  PubMed  Google Scholar 

  23. Gusterson, B.A., Ross, D.T., Heath, V.J. & Stein, T. Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer. Breast Cancer Res. 7, 143–148 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Nagle, R.B. et al. Characterization of breast carcinomas by two monoclonal antibodies distinguishing myoepithelial from luminal epithelial cells. J. Histochem. Cytochem. 34, 869–881 (1986).

    CAS  Article  PubMed  Google Scholar 

  25. Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl. Acad. Sci. USA 101, 4966–4971 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Asselin-Labat, M.L. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat. Cell Biol. 9, 201–209 (2007).

    CAS  Article  PubMed  Google Scholar 

  27. Romijn, H.J., van Huizen, F. & Wolters, P.S. Towards an improved serum-free, chemically defined medium for long-term culturing of cerebral cortex tissue. Neurosci. Biobehav. Rev. 8, 301–334 (1984).

    CAS  Article  PubMed  Google Scholar 

  28. Ma, Y. et al. The breast cancer susceptibility gene BRCA1 regulates progesterone receptor signaling in mammary epithelial cells. Mol. Endocrinol. 20, 14–34 (2006).

    CAS  Article  PubMed  Google Scholar 

  29. Poole, A.J. et al. Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314, 1467–1470 (2006).

    CAS  Article  PubMed  Google Scholar 

  30. Michaud, J. et al. Integrative analysis of RUNX1 downstream pathways and target genes. BMC Genomics 9, 363 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nielsen, T.O. et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin. Cancer Res. 10, 5367–5374 (2004).

    CAS  Article  PubMed  Google Scholar 

  32. Simon, R. et al. KIT (CD117)-positive breast cancers are infrequent and lack KIT gene mutations. Clin. Cancer Res. 10, 178–183 (2004).

    CAS  Article  PubMed  Google Scholar 

  33. Asselin-Labat, M.L. et al. Steroid hormone receptor status of mouse mammary stem cells. J. Natl. Cancer Inst. 98, 1011–1014 (2006).

    CAS  Article  PubMed  Google Scholar 

  34. Kauff, N.D. et al. Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J. Clin. Oncol. 26, 1331–1337 (2008).

    Article  PubMed  Google Scholar 

  35. Kauff, N.D. et al. Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N. Engl. J. Med. 346, 1609–1615 (2002).

    Article  PubMed  Google Scholar 

  36. Rebbeck, T.R. et al. Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N. Engl. J. Med. 346, 1616–1622 (2002).

    Article  PubMed  Google Scholar 

  37. Narod, S.A. Modifiers of risk of hereditary breast cancer. Oncogene 25, 5832–5836 (2006).

    CAS  Article  PubMed  Google Scholar 

  38. Mann, G.J. et al. Analysis of cancer risk and BRCA1 and BRCA2 mutation prevalence in the kConFab familial breast cancer resource. Breast Cancer Res. 8, R12 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shultz, L.D. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγ null mice engrafted with mobilized human hemopoietic stem cells. J. Immunol. 174, 6477–6489 (2005).

    CAS  Article  PubMed  Google Scholar 

  40. Wagner, K.U. et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 25, 4323–4330 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Deome, K.B., Faulkin, L.J. Jr., Bern, H.A. & Blair, P.B. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 19, 515–520 (1959).

    CAS  PubMed  Google Scholar 

  42. Laidlaw, I.J. et al. The proliferation of normal human breast tissue implanted into athymic nude mice is stimulated by estrogen but not progesterone. Endocrinology 136, 164–171 (1995).

    CAS  Article  PubMed  Google Scholar 

  43. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Stoev and K. Johnson for excellent animal husbandry, S. Mihajlovic and E. Tsui for expert assistance with histology and F. Battye and his colleagues for expert help in the flow cytometry lab. We thank J. Sambrook, E. McGowan, E. Musgrove and J. Adams for invaluable discussions and R. Reddel (Children's Medical Research Institute) for hTERT-immortalized fibroblasts. We thank K.U. Wagner (University of Nebraska Medical Center) for MMTV-Cre mice and A. Parlow (National Hormone and Pituitary Program, US National Institute of Diabetes, Digestive and Kidney Diseases) for prolactin. We gratefully acknowledge the invaluable contribution of numerous patients, surgeons, pathologists and tissue bank coordinators, and we thank A. Willems, E. Niedermayr, all kConFab research staff and Family Cancer Clinics and Clinical Follow-Up Study for their contributions to the kConFab resource, as well as the many families who contribute to kConFab. This work was supported by the Victorian Breast Cancer Research Consortium, the Australian National Health and Medical Research Council, the US National Breast Cancer Foundation, the US Department of Defense, the Susan G. Komen Breast Cancer Foundation, the Australian Stem Cell Centre, the Australian Cancer Research Foundation and the Victorian Cancer Biobank. kConFab is supported by grants from the National Breast Cancer Foundation, the National Health and Medical Research Council, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

E.L., F.V. and N.C.F. conducted most of the experiments and contributed to the writing of the manuscript. D.W. and G.K.S. performed the bioinformatic analyses and contributed to the writing of the manuscript. B.P, A.H.H. and M.-L.A.-L. performed RNA studies. D.E.G. and T.W. contributed to tissue preparation, immunohistochemistry and cell culture. F.F. helped optimize and performed some of the immunohistochemistry. A.P., H.J.T. and kConFab helped organize the accrual of the human breast tissue material. L.I.H. generated the hTERT-immortalized fibroblasts used for xenotransplantation studies. S.B.F. and M.Y. contributed to c-KIT staining and scoring. J.D.F. and M.A.B. contributed to the Brca1 experiments in mice. J.E.V. and G.J.L. conceptualized the study, contributed to study design and drafted and finalized the writing of the manuscript.

Corresponding authors

Correspondence to Jane E Visvader or Geoffrey J Lindeman.

Additional information

The Kathleen Cuningham Consortium for Research into Familial Breast Cancer.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Tables 1–4 and Supplementary Figs. 1–9 (PDF 2755 kb)

Supplementary Table 5

MaSC-enriched signature (XLS 300 kb)

Supplementary Table 6

Luminal progenitor gene signature (XLS 90 kb)

Supplementary Table 7

Luminal mature gene signature (XLS 138 kb)

Supplementary Table 8

Stroma signature (XLS 214 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lim, E., Vaillant, F., Wu, D. et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15, 907–913 (2009). https://doi.org/10.1038/nm.2000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2000

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing