Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys

Abstract

The key to an effective HIV vaccine is development of an immunogen that elicits persisting antibodies with broad neutralizing activity against field strains of the virus. Unfortunately, very little progress has been made in finding or designing such immunogens. Using the simian immunodeficiency virus (SIV) model, we have taken a markedly different approach: delivery to muscle of an adeno-associated virus gene transfer vector expressing antibodies or antibody-like immunoadhesins having predetermined SIV specificity. With this approach, SIV-specific molecules are endogenously synthesized in myofibers and passively distributed to the circulatory system. Using such an approach in monkeys, we have now generated long-lasting neutralizing activity in serum and have observed complete protection against intravenous challenge with virulent SIV. In essence, this strategy bypasses the adaptive immune system and holds considerable promise as a unique approach to an effective HIV vaccine.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic representation of immunoadhesin constructs.
Figure 2: Neutralization of SIV in vitro.
Figure 3: Serum concentration of immunoadhesins or antibodies after gene transfer and SIV challenge.
Figure 4: Detection of SIV in plasma after challenge.
Figure 5: Immunoadhesin antibodies in immunized monkeys.

References

  1. Buchbinder, S.P. et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372, 1881–1893 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Flynn, N.M. et al. Placebo-controlled phase 3 trial of a recombinant glycoprotein 120 vaccine to prevent HIV-1 infection. J. Infect. Dis. 191, 654–665 (2005).

    Article  PubMed  Google Scholar 

  3. McElrath, M.J. et al. HIV-1 vaccine–induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 372, 1894–1905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pitisuttithum, P. et al. Randomized, double-blind, placebo-controlled efficacy trial of a bivalent recombinant glycoprotein 120 HIV-1 vaccine among injection drug users in Bangkok, Thailand. J. Infect. Dis. 194, 1661–1671 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Desrosiers, R.C. Prospects for an AIDS vaccine. Nat. Med. 10, 221–223 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Fauci, A.S. et al. HIV vaccine research: the way forward. Science 321, 530–532 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Morgan, C. et al. The use of nonhuman primate models in HIV vaccine development. PLoS Med. 5, e173 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Walker, B.D. & Burton, D.R. Toward an AIDS vaccine. Science 320, 760–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Watkins, D.I. Basic HIV vaccine development. Top. HIV Med. 16, 7–8 (2008).

    PubMed  Google Scholar 

  10. Binley, J.M. et al. Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J. Virol. 82, 11651–11668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, Y. et al. Broad HIV-1 neutralization mediated by CD4-binding site antibodies. Nat. Med. 13, 1032–1034 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burton, D.R. et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024–1027 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Muster, T. et al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67, 6642–6647 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Trkola, A. et al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70, 1100–1108 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zwick, M.B. et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J. Virol. 75, 10892–10905 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baba, T.W. et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 6, 200–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Mascola, J.R. et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Parren, P.W. et al. Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J. Virol. 75, 8340–8347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sanhadji, K. et al. Gene transfer of anti-gp41 antibody and CD4 immunoadhesin strongly reduces the HIV-1 load in humanized severe combined immunodeficient mice. AIDS 14, 2813–2822 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Lewis, A.D., Chen, R., Montefiori, D.C., Johnson, P.R. & Clark, K.R. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J. Virol. 76, 8769–8775 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson, W.E. et al. Assorted mutations in the envelope gene of simian immunodeficiency virus lead to loss of neutralization resistance against antibodies representing a broad spectrum of specificities. J. Virol. 77, 9993–10003 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Means, R.E. et al. Ability of the V3 loop of simian immunodeficiency virus to serve as a target for antibody-mediated neutralization: correlation of neutralization sensitivity, growth in macrophages, and decreased dependence on CD4. J. Virol. 75, 3903–3915 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mori, K., Ringler, D.J., Kodama, T. & Desrosiers, R. Complex determinants of macrophage tropism in env of simian immunodeficiency virus. J. Virol. 66, 2067–2075 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Allaway, G.P., Ryder, A.M., Beaudry, G.A. & Maddon, P.J. Synergistic inhibition of HIV-1 envelope-mediated cell fusion by CD4-based molecules in combination with antibodies to gp120 or gp41. AIDS Res. Hum. Retroviruses 9, 581–587 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. McCarty, D.M. et al. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther. 10, 2112–2118 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. McCarty, D.M. Self-complementary AAV vectors; advances and applications. Mol. Ther. 16, 1648–1656 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Rabinowitz, J.E. et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol. 76, 791–801 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herzog, R.W. et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat. Med. 5, 56–63 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Davidoff, A.M. et al. Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol. Ther. 11, 875–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Fang, J. et al. Stable antibody expression at therapeutic levels using the 2A peptide. Nat. Biotechnol. 23, 584–590 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Honegger, A. Engineering antibodies for stability and efficient folding. Handb. Exp. Pharmacol. 181, 47–68 (2008).

    Article  CAS  Google Scholar 

  32. dos Santos Coura, R. & Nardi, N.B. The state of the art of adeno-associated virus–based vectors in gene therapy. Virol. J. 4, 99 (2007).

    Article  Google Scholar 

  33. Daya, S. & Berns, K.I. Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev. 21, 583–593 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chenuaud, P. et al. Optimal design of a single recombinant adeno-associated virus derived from serotypes 1 and 2 to achieve more tightly regulated transgene expression from nonhuman primate muscle. Mol. Ther. 9, 410–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Penaud-Budloo, M. et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J. Virol. 82, 7875–7885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rivera, V.M. et al. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood 105, 1424–1430 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Toromanoff, A. et al. Safety and efficacy of regional intravenous (r.i.) versus intramuscular (i.m.) delivery of rAAV1 and rAAV8 to nonhuman primate skeletal muscle. Mol. Ther. 16, 1291–1299 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Schnepp, B.C., Clark, K.R., Klemanski, D.L., Pacak, C.A. & Johnson, P.R. Genetic fate of recombinant adeno-associated virus vector genomes in muscle. J. Virol. 77, 3495–3504 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schnepp, B.C., Jensen, R.L., Clark, K.R. & Johnson, P.R. Infectious molecular clones of adeno-associated virus isolated directly from human tissues. J. Virol. 83, 1456–1464 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Fang, J. et al. An antibody delivery system for regulated expression of therapeutic levels of monoclonal antibodies in vivo. Mol. Ther. 15, 1153–1159 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Frade, R., Rousselet, N. & Jean, D. Intratumoral gene delivery of anti–cathepsin L single-chain variable fragment by lentiviral vector inhibits tumor progression induced by human melanoma cells. Cancer Gene Ther. 15, 591–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. He, J. et al. Construction and delivery of gene therapy vector containing soluble TNFα receptor–IgGFc fusion gene for the treatment of allergic rhinitis. Cytokine 36, 296–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Jiang, M. et al. Gene therapy using adenovirus-mediated full-length anti–HER-2 antibody for HER-2 overexpression cancers. Clin. Cancer Res. 12, 6179–6185 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kasuya, K. et al. Passive immunotherapy for anthrax toxin mediated by an adenovirus expressing an anti-protective antigen single-chain antibody. Mol. Ther. 11, 237–244 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Pereboev, A. et al. Genetically delivered antibody protects against West Nile virus. Antiviral Res. 77, 6–13 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Sandalon, Z. et al. Secretion of a TNFR:Fc fusion protein following pulmonary administration of pseudotyped adeno-associated virus vectors. J. Virol. 78, 12355–12365 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Skaricic, D. et al. Genetic delivery of an anti-RSV antibody to protect against pulmonary infection with RSV. Virology 378, 79–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Vigna, E. et al. “Active” cancer immunotherapy by anti-Met antibody gene transfer. Cancer Res. 68, 9176–9183 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Yuvaraj, S. et al. Human scFv SIgA expressed on Lactococcus lactis as a vector for the treatment of mucosal disease. Mol. Nutr. Food Res. 52, 913–920 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Zuber, C. et al. Delivery of single-chain antibodies (scFvs) directed against the 37/67 kDa laminin receptor into mice via recombinant adeno-associated viral vectors for prion disease gene therapy. J. Gen. Virol. 89, 2055–2061 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Jones, T.D. et al. The development of a modified human IFN-α2b linked to the Fc portion of human IgG1 as a novel potential therapeutic for the treatment of hepatitis C virus infection. J. Interferon Cytokine Res. 24, 560–572 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Swann, P.G. et al. Considerations for the development of therapeutic monoclonal antibodies. Curr. Opin. Immunol. 20, 493–499 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Cadogan, M. & Dalgleish, A.G. HIV immunopathogenesis and strategies for intervention. Lancet Infect. Dis. 8, 675–684 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Hessell, A.J. et al. Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449, 101–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Schiller, J.T., Castellsague, X., Villa, L.L. & Hildesheim, A. An update of prophylactic human papillomavirus L1 virus–like particle vaccine clinical trial results. Vaccine 26 Suppl 10, K53–K61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barash, S., Wang, W. & Shi, Y. Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression. Biochem. Biophys. Res. Commun. 294, 835–842 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Ostedgaard, L.S. et al. A shortened adeno-associated virus expression cassette for CFTR gene transfer to cystic fibrosis airway epithelia. Proc. Natl. Acad. Sci. USA 102, 2952–2957 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Levitt, N., Briggs, D., Gil, A. & Proudfoot, N.J. Definition of an efficient synthetic poly(A) site. Genes Dev. 3, 1019–1025 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Clark, K.R., Liu, X., McGrath, J.P. & Johnson, P.R. Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum. Gene Ther. 10, 1031–1039 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Lifson, J.D. et al. Role of CD8+ lymphocytes in control of simian immunodeficiency virus infection and resistance to rechallenge after transient early antiretroviral treatment. J. Virol. 75, 10187–10199 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Hessell and D. Burton (The Scripps Research Institute) for providing the SIV Fab molecular clones, D. McCarty (The Research Institute at Nationwide Children's Hospital) for the self-complementary AAV vector genome, R. Doms (University of Pennsylvania) for purified SIVmac gp120, J. Bixby and E. Mackenzie for technical assistance and M. Piatek and J. Lifson for SIV viral load data. We also thank J. Hoxie and S. Douglas for helpful comments on the manuscript. Funding for this work was provided by grants from the US National Institutes of Health National Institute of Allergy and Infectious Diseases Division of AIDS (P.R.J. and R.C.D.), National Institutes of Health National Center for Research Resources (R.C.D.) and support from The Children's Hospital of Philadelphia.

Author information

Authors and Affiliations

Authors

Contributions

Project planning was performed by P.R.J., B.C.S. and K.R.C.; experimental work was performed by B.C.S., J.Z., M.J.C., S.M.G. and E.Y.; data analysis was performed by P.R.J., K.R.C., R.C.D., B.C.S., J.Z., M.J.C. and S.M.G.; and the manuscript was composed by P.R.J., R.C.D., B.C.S. and K.R.C.

Corresponding author

Correspondence to Philip R Johnson.

Supplementary information

Supplementary Text and Figures

Supplementary Fig. 1 (PDF 710 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Johnson, P., Schnepp, B., Zhang, J. et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med 15, 901–906 (2009). https://doi.org/10.1038/nm.1967

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1967

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing