Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia

Abstract

Organized neuronal firing is crucial for cortical processing and is disrupted in schizophrenia. Using rapid amplification of 5′ complementary DNA ends in human brain, we identified a primate-specific isoform (3.1) of the ether-a-go-go–related K+ channel KCNH2 that modulates neuronal firing. KCNH2-3.1 messenger RNA levels are comparable to full-length KCNH2 (1A) levels in brain but three orders of magnitude lower in heart. In hippocampus from individuals with schizophrenia, KCNH2-3.1 expression is 2.5-fold greater than KCNH2-1A expression. A meta-analysis of five clinical data sets (367 families, 1,158 unrelated cases and 1,704 controls) shows association of single nucleotide polymorphisms in KCNH2 with schizophrenia. Risk-associated alleles predict lower intelligence quotient scores and speed of cognitive processing, altered memory-linked functional magnetic resonance imaging signals and increased KCNH2-3.1 mRNA levels in postmortem hippocampus. KCNH2-3.1 lacks a domain that is crucial for slow channel deactivation. Overexpression of KCNH2-3.1 in primary cortical neurons induces a rapidly deactivating K+ current and a high-frequency, nonadapting firing pattern. These results identify a previously undescribed KCNH2 channel isoform involved in cortical physiology, cognition and psychosis, providing a potential new therapeutic drug target.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic association of 7q36.1 with risk for schizophrenia.
Figure 2: Association of risk SNPs with cognitive measures, brain structure volumes and regional brain activity during memory-based tasks.
Figure 3: Regional gene expression and association with risk genotype.
Figure 4: Detection and quantification of KCNH2-3.1 mRNA and protein.
Figure 5: Characterization of KCNH2 currents in HEK293T cells expressing KCNH2-1A and KCNH2-3.1.
Figure 6: Effect of KCNH2-3.1 on repolarization-induced tail currents and firing patterns in cortical neurons.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ioannidis, J.P., Ntzani, E.E., Trikalinos, T.A. & Contopoulos-Ioannidis, D.G. Replication validity of genetic association studies. Nat. Genet. 29, 306–309 (2001).

    Article  CAS  Google Scholar 

  2. Trikalinos, T.A., Ntzani, E.E., Contopoulos-Ioannidis, D.G. & Ioannidis, J.P. Establishment of genetic associations for complex diseases is independent of early study findings. Eur. J. Hum. Genet. 12, 762–769 (2004).

    Article  CAS  Google Scholar 

  3. Weiss, K.M. & Terwilliger, J.D. How many diseases does it take to map a gene with SNPs? Nat. Genet. 26, 151–157 (2000).

    Article  CAS  Google Scholar 

  4. Frayling, T.M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  Google Scholar 

  5. Grarup, N. et al. Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies. Diabetes 56, 3105–3111 (2007).

    Article  CAS  Google Scholar 

  6. Callicott, J.H. et al. Abnormal fMRI response of the dorsolateral prefrontal cortex in cognitively intact siblings of patients with schizophrenia. Am. J. Psychiatry 160, 709–719 (2003).

    Article  Google Scholar 

  7. Cannon, T.D. et al. The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am. J. Hum. Genet. 67, 369–382 (2000).

    Article  CAS  Google Scholar 

  8. Egan, M.F. et al. Relative risk of attention deficits in siblings of patients with schizophrenia. Am. J. Psychiatry 157, 1309–1316 (2000).

    Article  CAS  Google Scholar 

  9. Egan, M.F. et al. Relative risk for cognitive impairments in siblings of patients with schizophrenia. Biol. Psychiatry 50, 98–107 (2001).

    Article  CAS  Google Scholar 

  10. Honea, R.A. et al. Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings. Biol. Psychiatry 63, 465–474 (2008).

    Article  Google Scholar 

  11. Winterer, G. et al. Prefrontal broadband noise, working memory and genetic risk for schizophrenia. Am. J. Psychiatry 161, 490–500 (2004).

    Article  Google Scholar 

  12. Winterer, G. & Weinberger, D.R. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci. 27, 683–690 (2004).

    Article  CAS  Google Scholar 

  13. Straub, R.E. & Weinberger, D.R. Schizophrenia genes—famine to feast. Biol. Psychiatry 60, 81–83 (2006).

    Article  Google Scholar 

  14. Peirce, T.R. et al. Convergent evidence for 2′,3′-cyclic nucleotide 3′-phosphodiesterase as a possible susceptibility gene for schizophrenia. Arch. Gen. Psychiatry 63, 18–24 (2006).

    Article  CAS  Google Scholar 

  15. Talkowski, M.E., Chowdari, K., Lewis, D.A. & Nimgaonkar, V.L. Can RGS4 polymorphisms be viewed as credible risk factors for schizophrenia? A critical review of the evidence. Schizophr. Bull. 32, 203–208 (2006).

    Article  Google Scholar 

  16. Prabakaran, S. et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry. 9, 684–697, 643 (2004).

    Article  CAS  Google Scholar 

  17. Horvath, S., Xu, X. & Laird, N.M. The family based association test method: strategies for studying general genotype-phenotype associations. Eur. J. Hum. Genet. 9, 301–306 (2001).

    Article  CAS  Google Scholar 

  18. The International HapMap Project. The International HapMap Project. Nature 426, 789–796 (2003).

  19. Cloninger, C.R. et al. Genome-wide search for schizophrenia susceptibility loci: the NIMH Genetics Initiative and Millennium Consortium. Am. J. Med. Genet. 81, 275–281 (1998).

    Article  CAS  Google Scholar 

  20. Nicodemus, K.K. Catmap: case-control and TDT meta-analysis package. BMC Bioinformatics 9, 130 (2008).

    Article  Google Scholar 

  21. Chanock, S.J. et al. Replicating genotype-phenotype associations. Nature 447, 655–660 (2007).

    Article  CAS  Google Scholar 

  22. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  23. Allen, N.C. et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat. Genet. 40, 827–834 (2008).

    Article  CAS  Google Scholar 

  24. Ioannidis, J.P. et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int. J. Epidemiol. 37, 120–132 (2008).

    Article  Google Scholar 

  25. Guasti, L. et al. Expression pattern of the ether-a-go-go-related (ERG) family proteins in the adult mouse central nervous system: evidence for coassembly of different subunits. J. Comp. Neurol. 491, 157–174 (2005).

    Article  CAS  Google Scholar 

  26. Harrison, P.J. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122, 593–624 (1999).

    Article  Google Scholar 

  27. Weinberger, D.R. et al. Prefrontal neurons and the genetics of schizophrenia. Biol. Psychiatry 50, 825–844 (2001).

    Article  CAS  Google Scholar 

  28. Genderson, M.R. et al. Factor analysis of neurocognitive tests in a large sample of schizophrenic probands, their siblings, and healthy controls. Schizophr. Res. 94, 231–239 (2007).

    Article  Google Scholar 

  29. Hariri, A.R. & Weinberger, D.R. Imaging genomics. Br. Med. Bull. 65, 259–270 (2003).

    Article  CAS  Google Scholar 

  30. Hariri, A.R. et al. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci. 23, 6690–6694 (2003).

    Article  CAS  Google Scholar 

  31. Bookheimer, S.Y. et al. Patterns of brain activation in people at risk for Alzheimer's disease. N. Engl. J. Med. 343, 450–456 (2000).

    Article  CAS  Google Scholar 

  32. Egan, G. et al. Neural correlates of the emergence of consciousness of thirst. Proc. Natl. Acad. Sci. USA 100, 15241–15246 (2003).

    Article  CAS  Google Scholar 

  33. Davachi, L. & Goldman-Rakic, P.S. Primate rhinal cortex participates in both visual recognition and working memory tasks: functional mapping with 2-DG. J. Neurophysiol. 85, 2590–2601 (2001).

    Article  CAS  Google Scholar 

  34. Royall, D.R. et al. Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. J. Neuropsychiatry Clin. Neurosci. 14, 377–405 (2002).

    Article  Google Scholar 

  35. Gray, J.R., Chabris, C.F. & Braver, T.S. Neural mechanisms of general fluid intelligence. Nat. Neurosci. 6, 316–322 (2003).

    Article  CAS  Google Scholar 

  36. Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460 (2000).

    Article  CAS  Google Scholar 

  37. Callicott, J.H. et al. Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb. Cortex 10, 1078–1092 (2000).

    Article  CAS  Google Scholar 

  38. Kongsamut, S., Kang, J., Chen, X.L., Roehr, J. & Rampe, D. A comparison of the receptor binding and HERG channel affinities for a series of antipsychotic drugs. Eur. J. Pharmacol. 450, 37–41 (2002).

    Article  CAS  Google Scholar 

  39. Warmke, J.W. & Ganetzky, B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc. Natl. Acad. Sci. USA 91, 3438–3442 (1994).

    Article  CAS  Google Scholar 

  40. Wimmers, S., Bauer, C.K. & Schwarz, J.R. Biophysical properties of heteromultimeric erg K+ channels. Pflugers Arch. 445, 423–430 (2002).

    Article  Google Scholar 

  41. Sanguinetti, M.C. & Tristani-Firouzi, M. hERG potassium channels and cardiac arrhythmia. Nature 440, 463–469 (2006).

    Article  CAS  Google Scholar 

  42. Morais Cabral, J.H. et al. Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell 95, 649–655 (1998).

    Article  CAS  Google Scholar 

  43. Bracci, E., Vreugdenhil, M., Hack, S.P. & Jefferys, J.G. On the synchronizing mechanisms of tetanically induced hippocampal oscillations. J. Neurosci. 19, 8104–8113 (1999).

    Article  CAS  Google Scholar 

  44. Bazhenov, M., Timofeev, I., Steriade, M. & Sejnowski, T.J. Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. J. Neurophysiol. 92, 1116–1132 (2004).

    Article  CAS  Google Scholar 

  45. Canolty, R.T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Article  CAS  Google Scholar 

  46. Chiesa, N., Rosati, B., Arcangeli, A., Olivotto, M. & Wanke, E. A novel role for HERG K+ channels: spike-frequency adaptation. J. Physiol. (Lond.) 501, 313–318 (1997).

    Article  CAS  Google Scholar 

  47. Sacco, T., Bruno, A., Wanke, E. & Tempia, F. Functional roles of an ERG current isolated in cerebellar Purkinje neurons. J. Neurophysiol. 90, 1817–1828 (2003).

    Article  Google Scholar 

  48. Wang, Y. et al. Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nat. Neurosci. 9, 534–542 (2006).

    Article  CAS  Google Scholar 

  49. Spector, P.S., Curran, M.E., Keating, M.T. & Sanguinetti, M.C. Class III antiarrhythmic drugs block HERG, a human cardiac delayed rectifier K+ channel. Open-channel block by methanesulfonanilides. Circ. Res. 78, 499–503 (1996).

    Article  CAS  Google Scholar 

  50. O'Donovan, M.C. et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat. Genet. 40, 1053–1055 (2008).

    Article  CAS  Google Scholar 

  51. Sullivan, P.F. et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol. Psychiatry 13, 570–584 (2008).

    Article  CAS  Google Scholar 

  52. Witchel, H.J., Hancox, J.C., Nutt, D.J. & Wilson, S. Antipsychotics, HERG and sudden death. Br. J. Psychiatry 182, 171–172 (2003).

    Article  CAS  Google Scholar 

  53. Livak, K.J. Allelic discrimination using fluorogenic probes and the 5′ nuclease assay. Genet. Anal. 14, 143–149 (1999).

    Article  CAS  Google Scholar 

  54. Lipska, B.K. et al. Expression of Drosoph. Inf. Serv.C1 binding partners is reduced in schizophrenia and associated with Drosoph. Inf. Serv.C1 SNPs. Hum. Mol. Genet. 15, 1245–1258 (2006).

    Article  CAS  Google Scholar 

  55. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004).

    Article  Google Scholar 

  56. Nagappan, G. et al. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity. Proc. Natl. Acad. Sci. USA 106, 1267–1272 (2009).

    Article  CAS  Google Scholar 

  57. Luna, A. & Nicodemus, K.K. snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package. Bioinformatics 23, 774–776 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Hardy, J. Duckworth and P. Momeni for technical assistance with high G-C content sequencing. We also thank J. Hardy, D. Goldman, A. Law and W. Chen for their very helpful review of the manuscript. We thank R. Straub and M. Mayhew for their input on statistical genetics analysis, M. Barenboim for help with bioinformatics and M. Herman and S. Mitkus for their help with postmortem tissue. We are extremely grateful for the assistance of G. Liu and S. Chen in the cloning and sequencing of KCNH2-3.1. We also would like to thank H.-J. Möller, P. Muglia and coworkers at the Department of Psychiatry, Ludwig Maximilians University for their help with subject recruitment and evaluation. S.J. Huffaker was partially supported by the US National Institutes of Health/Cambridge University Health Science Scholars and Medical Scientist Training Programs. Recruitment of the individuals with schizophrenia at Ludwig Maximilians University was supported by GlaxoSmithKline. Human fetal tissue was obtained from the NICHD Brain and Tissue Bank for Developmental Disorders at the University of Maryland.

Author information

Authors and Affiliations

Authors

Contributions

S.J.H. designed the study, collected and analyzed the data and wrote the paper; D.R.W. designed the study, analyzed data and wrote the paper; K.K.N. performed the statistical genetics and wrote the paper; J. Chen, Y.J. and J.S. performed western blot and HEK expression experiments; F.S., V.M., J.H.C., M.J.P. and A.M.-L. performed the imaging experiments and edited the paper; F.Y., B.K.L. and J. Chang performed the electrophysiology experiments; D.R. and I.G. collected the German cohort samples; A.S. and K.M. collected the Armenian cohort samples; A.B. and G.C. collected the Italian data set; B.L., J.E.K. and T.M.H. collected the postmortem cohort samples; D.R.W., J.E.K., M.F.E., T.E.G., T.M.H., V.M. and J.H.C. collected the CBDB cohort samples.

Corresponding author

Correspondence to Daniel R Weinberger.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Data 1–8, Supplementary Figs. 1–4, Supplementary Note and Supplementary Methods (PDF 2068 kb)

Supplementary Data 9 (XLS 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huffaker, S., Chen, J., Nicodemus, K. et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med 15, 509–518 (2009). https://doi.org/10.1038/nm.1962

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing