Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II–induced aortic aneurysms

Abstract

Inflammation and oxidative stress are pathogenic mediators of many diseases, but molecules that could be therapeutic targets remain elusive. Inflammation and matrix degradation in the vasculature are crucial for abdominal aortic aneurysm (AAA) formation. Cyclophilin A (CypA, encoded by Ppia) is highly expressed in vascular smooth muscle cells (VSMCs), is secreted in response to reactive oxygen species (ROS) and promotes inflammation. Using the angiotensin II (AngII)-induced AAA model in Apoe−/− mice, we show that Apoe−/−Ppia−/− mice are completely protected from AngII–induced AAA formation, in contrast to Apoe−/−Ppia+/+ mice. Apoe−/−Ppia−/− mice show decreased inflammatory cytokine expression, elastic lamina degradation and aortic expansion. These features were not altered by reconstitution of bone marrow cells from Ppia+/+ mice. Mechanistic studies showed that VSMC-derived intracellular and extracellular CypA are required for ROS generation and matrix metalloproteinase-2 activation. These data define a previously undescribed role for CypA in AAA formation and suggest CypA as a new target for treating cardiovascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CypA deficiency prevents AngII-induced AAA formation.
Figure 2: CypA deficiency reduces AngII-induced inflammatory cell accumulation and microvessel formation.
Figure 3: Bone marrow (BM) reconstitution shows a key role for vascular-derived CypA in AAA formation.
Figure 4: CypA is crucial for secretion and activation of MMPs.
Figure 5: AngII-induced ROS formation in VSMCs requires CypA.
Figure 6: VSMC-derived CypA has a crucial role in aortic ROS production, MMP-2 activation and AAA formation.

Similar content being viewed by others

References

  1. Kunieda, T. et al. Angiotensin II induces premature senescence of vascular smooth muscle cells and accelerates the development of atherosclerosis via a p21-dependent pathway. Circulation 114, 953–960 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Griendling, K.K. & FitzGerald, G.A. Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation 108, 2034–2040 (2003).

    Article  PubMed  Google Scholar 

  3. Taniyama, Y. & Griendling, K.K. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42, 1075–1081 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Bruemmer, D. et al. Angiotensin II–accelerated atherosclerosis and aneurysm formation is attenuated in osteopontin-deficient mice. J. Clin. Invest. 112, 1318–1331 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun, J. et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat. Med. 13, 719–724 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Yoshimura, K. et al. Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat. Med. 11, 1330–1338 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Thomas, M. et al. Deletion of p47phox attenuates angiotensin II–induced abdominal aortic aneurysm formation in apolipoprotein E–deficient mice. Circulation 114, 404–413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gavazzi, G. et al. NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension 50, 189–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Thompson, R.W. & Baxter, B.T. MMP inhibition in abdominal aortic aneurysms. Ann. NY Acad. Sci. 878, 159–178 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Manning, M.W., Cassis, L.A. & Daugherty, A. Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II–induced atherosclerosis and abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 23, 483–488 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Valentin, F., Bueb, J.L., Kieffer, P., Tschirhart, E. & Atkinson, J. Oxidative stress activates MMP-2 in cultured human coronary smooth muscle cells. Fundam. Clin. Pharmacol. 19, 661–667 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Clempus, R.E. & Griendling, K.K. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc. Res. 71, 216–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. McCormick, M.L., Gavrila, D. & Weintraub, N.L. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 27, 461–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Rajagopalan, S. et al. Angiotensin II–mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97, 1916–1923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Browatzki, M. et al. Angiotensin II stimulates matrix metalloproteinase secretion in human vascular smooth muscle cells via nuclear factor-κB and activator protein 1 in a redox-sensitive manner. J. Vasc. Res. 42, 415–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Daugherty, A., Manning, M.W. & Cassis, L.A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E–deficient mice. J. Clin. Invest. 105, 1605–1612 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Daugherty, A. & Cassis, L.A. Mouse models of abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 24, 429–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Handschumacher, R.E., Harding, M.W., Rice, J., Drugge, R.J. & Speicher, D.W. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226, 544–547 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Jin, Z.G. et al. Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ. Res. 87, 789–796 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Liao, D.F. et al. Purification and identification of secreted oxidative stress–induced factors from vascular smooth muscle cells. J. Biol. Chem. 275, 189–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki, J., Jin, Z.G., Meoli, D.F., Matoba, T. & Berk, B.C. Cyclophilin A is secreted by a vesicular pathway in vascular smooth muscle cells. Circ. Res. 98, 811–817 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Khromykh, L.M. et al. Cyclophilin A produced by thymocytes regulates the migration of murine bone marrow cells. Cell. Immunol. 249, 46–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Golledge, J., Muller, J., Daugherty, A. & Norman, P. Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler. Thromb. Vasc. Biol. 26, 2605–2613 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Saraff, K., Babamusta, F., Cassis, L.A. & Daugherty, A. Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E–deficient mice. Arterioscler. Thromb. Vasc. Biol. 23, 1621–1626 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Gavrila, D. et al. Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II–infused apolipoprotein E–deficient mice. Arterioscler. Thromb. Vasc. Biol. 25, 1671–1677 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, X.L., Tummala, P.E., Olbrych, M.T., Alexander, R.W. & Medford, R.M. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circ. Res. 83, 952–959 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Bharadwaj, U. et al. Effects of cyclophilin A on myeloblastic cell line KG-1 derived dendritic like cells (DLC) through p38 MAP kinase activation(1,2). J. Surg. Res. 127, 29–38 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Satoh, K. et al. Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation 113, 1442–1450 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Pyo, R. et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J. Clin. Invest. 105, 1641–1649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Longo, G.M. et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J. Clin. Invest. 110, 625–632 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Visse, R. & Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Yurchenko, V. et al. Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J. Biol. Chem. 277, 22959–22965 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Rajagopalan, S., Meng, X.P., Ramasamy, S., Harrison, D.G. & Galis, Z.S. Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Invest. 98, 2572–2579 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Castier, Y., Brandes, R.P., Leseche, G., Tedgui, A. & Lehoux, S. p47phox-dependent NADPH oxidase regulates flow-induced vascular remodeling. Circ. Res. 97, 533–540 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Satoh, K. et al. Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation 117, 3088–3098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mehta, P.K. & Griendling, K.K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 292, C82–C97 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Luchtefeld, M. et al. Angiotensin II induces MMP-2 in a p47phox-dependent manner. Biochem. Biophys. Res. Commun. 328, 183–188 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Eagleton, M.J. et al. Early increased MT1-MMP expression and late MMP-2 and MMP-9 activity during angiotensin II induced aneurysm formation. J. Surg. Res. 135, 345–351 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Shimokawa, H. & Takeshita, A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler. Thromb. Vasc. Biol. 25, 1767–1775 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y.X. et al. Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II–induced abdominal aortic aneurysm in apolipoprotein E–deficient mice by inhibiting apoptosis and proteolysis. Circulation 111, 2219–2226 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Habashi, J.P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cassis, L.A., Rateri, D.L., Lu, H. & Daugherty, A. Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin II–induced atherosclerosis and aneurysms. Arterioscler. Thromb. Vasc. Biol. 27, 380–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Ejiri, J. et al. Oxidative stress in the pathogenesis of thoracic aortic aneurysm: protective role of statin and angiotensin II type 1 receptor blocker. Cardiovasc. Res. 59, 988–996 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Guo, H. et al. Characterization of the gene for human EMMPRIN, a tumor cell surface inducer of matrix metalloproteinases. Gene 220, 99–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Haug, C., Lenz, C., Diaz, F. & Bachem, M.G. Oxidized low-density lipoproteins stimulate extracellular matrix metalloproteinase inducer (EMMPRIN) release by coronary smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 24, 1823–1829 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, X.F. et al. Extracellular matrix metalloproteinase inducer (EMMPRIN) is present in smooth muscle cells of human aneurysmal aorta and is induced by angiotensin II in vitro. Clin. Sci. (Lond.) published online, doi:10.1042/CS20080235 (2008).

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant HL49192 (to B.C.B.) and Japan Heart Foundation/Bayer Yakuhin Research Grant Abroad (to K.S.). We are grateful to the Aab Cardiovascular Research Institute members for useful suggestions and R. Winterkorn, M.A. Georger and A.T. Paxhia for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

K.S. contributed to the design of the experiments, conducted and performed the experiments and generated the manuscript and figures. P.N. helped the design of the experiments and performed experiments. T.M., C.Y. and J.-i.A. contributed to generating VSMC-specific CypA–transgenic mice. M.R.O. and A.M. contributed to the in vivo experiments, including colony management, genotyping and hemodynamic measurements. Z.C. and X.S. contributed to preparation of recombinant CypA. K.A.I. contributed to the design of the experiments. B.C.B. supervised the project, contributed to the design of the experiments and wrote the manuscript.

Corresponding author

Correspondence to Bradford C Berk.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–7, Supplementary Table 1 and Supplementary Methods (PDF 1251 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satoh, K., Nigro, P., Matoba, T. et al. Cyclophilin A enhances vascular oxidative stress and the development of angiotensin II–induced aortic aneurysms. Nat Med 15, 649–656 (2009). https://doi.org/10.1038/nm.1958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing