Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis

Abstract

Although the transforming growth factor-β (TGF-β) pathway has been implicated in breast cancer metastasis, its in vivo dynamics and temporal-spatial involvement in organ-specific metastasis have not been investigated. Here we engineered a xenograft model system with a conditional control of the TGF-β–SMAD signaling pathway and a dual-luciferase reporter system for tracing both metastatic burden and TGF-β signaling activity in vivo. Strong TGF-β signaling in osteolytic bone lesions is suppressed directly by genetic and pharmacological disruption of the TGF-β–SMAD pathway and indirectly by inhibition of osteoclast function with bisphosphonates. Notably, disruption of TGF-β signaling early in metastasis can substantially reduce metastasis burden but becomes less effective when bone lesions are well established. Our in vivo system for real-time manipulation and detection of TGF-β signaling provides a proof of principle for using similar strategies to analyze the in vivo dynamics of other metastasis-associated signaling pathways and will expedite the development and characterization of therapeutic agents.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: In vitro and in vivo characterization of the SCP28-SMAD4Tet Duo system.
Figure 2: Temporal dependence of bone metastasis on the TGF-β–SMAD pathway in vivo.
Figure 3: Therapeutic response of bone metastasis to TGF-β receptor I kinase inhibitor LY2109761.
Figure 4: Pamidronate treatment substantially reduces skeletal morbidity and TGF-β signaling activity in metastatic bone lesions.
Figure 5: Tumor-induced osteolysis enhances TGF-β signaling in tumor cells.

References

  1. Yingling, J.M., Blanchard, K.L. & Sawyer, J.S. Development of TGF-β signalling inhibitors for cancer therapy. Nat. Rev. Drug Discov. 3, 1011–1022 (2004).

    Article  CAS  Google Scholar 

  2. Bierie, B. & Moses, H.L. Tumour microenvironment: TGF-β: the molecular Jekyll and Hyde of cancer. Nat. Rev. Cancer 6, 506–520 (2006).

    Article  CAS  Google Scholar 

  3. Dumont, N. & Arteaga, C.L. Targeting the TGF-β signaling network in human neoplasia. Cancer Cell 3, 531–536 (2003).

    Article  CAS  Google Scholar 

  4. Massagué, J. TGF-β in cancer. Cell 134, 215–230 (2008).

    Article  Google Scholar 

  5. Yin, J.J. et al. TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest. 103, 197–206 (1999).

    Article  CAS  Google Scholar 

  6. Padua, D. et al. TGF-β primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008).

    Article  CAS  Google Scholar 

  7. Kang, Y. et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl. Acad. Sci. USA 102, 13909–13914 (2005).

    Article  CAS  Google Scholar 

  8. Muraoka-Cook, R.S. et al. Activated type I TGF-β receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 25, 3408–3423 (2006).

    Article  CAS  Google Scholar 

  9. Mundy, G.R. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer 2, 584–593 (2002).

    Article  CAS  Google Scholar 

  10. Roodman, G.D. Mechanisms of bone metastasis. N. Engl. J. Med. 350, 1655–1664 (2004).

    Article  CAS  Google Scholar 

  11. Guise, T.A. et al. Molecular mechanisms of breast cancer metastases to bone. Clin. Breast Cancer 5 Suppl, S46–S53 (2005).

    Article  CAS  Google Scholar 

  12. Pfeilschifter, J. & Mundy, G.R. Modulation of type β transforming growth factor activity in bone cultures by osteotropic hormones. Proc. Natl. Acad. Sci. USA 84, 2024–2028 (1987).

    Article  CAS  Google Scholar 

  13. Dallas, S.L., Rosser, J.L., Mundy, G.R. & Bonewald, L.F. Proteolysis of latent transforming growth factor-β (TGF-β)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-β from bone matrix. J. Biol. Chem. 277, 21352–21360 (2002).

    Article  CAS  Google Scholar 

  14. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  Google Scholar 

  15. Minn, A.J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005).

    Article  CAS  Google Scholar 

  16. Zawel, L. et al. Human SMAD3 and SMAD4 are sequence-specific transcription activators. Mol. Cell 1, 611–617 (1998).

    Article  CAS  Google Scholar 

  17. Lin, A.H., Luo, J., Mondshein, L.H., ten Dijke, P., Vivien, D., Contag, C.H. & Wyss-Coray, T. Global analysis of Smad2/3-dependent TGF-β signaling in living mice reveals prominent tissue-specific responses to injury. J. Immunol. 175, 547–554 (2005).

    Article  CAS  Google Scholar 

  18. Melisi, D. et al. LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol. Cancer Ther. 7, 829–840 (2008).

    Article  CAS  Google Scholar 

  19. Li, H.Y. et al. Optimization of a dihydropyrrolopyrazole series of transforming growth factor-β type I receptor kinase domain inhibitors: discovery of an orally bioavailable transforming growth factor-β receptor type I inhibitor as antitumor agent. J. Med. Chem. 51, 2302–2306 (2008).

    Article  CAS  Google Scholar 

  20. Russell, R.G. et al. Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann. NY Acad. Sci. 1117, 209–257 (2007).

    Article  CAS  Google Scholar 

  21. Gross, S. & Piwnica-Worms, D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7, 5–15 (2005).

    CAS  PubMed  Google Scholar 

  22. Gelovani Tjuvajev, J. & Blasberg, R.G. In vivo imaging of molecular-genetic targets for cancer therapy. Cancer Cell 3, 327–332 (2003).

    Article  Google Scholar 

  23. Deroose, C.M. et al. Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT and bioluminescence imaging. J. Nucl. Med. 48, 295–303 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoffman, R.M. Imaging cancer dynamics in vivo at the tumor and cellular level with fluorescent proteins. Clin. Exp. Metastasis 26, 345–355 (2009).

    Article  CAS  Google Scholar 

  25. Fritz, V. et al. Micro-CT combined with bioluminescence imaging: a dynamic approach to detect early tumor-bone interaction in a tumor osteolysis murine model. Bone 40, 1032–1040 (2007).

    Article  CAS  Google Scholar 

  26. Body, J.J.D.I., Lichinitzer, M., Lazarev, A., Pecherstorfer, M., Bell, R., Tripathy, D. & Bergstrom, B. Oral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: results from two randomised, placebo-controlled phase III studies. Br. J. Cancer 90, 1133–1137 (2004).

    Article  CAS  Google Scholar 

  27. Tripathy, D., Lichinitzer, M., Lazarev, A., MacLachlan, S.A., Apffelstaedt, J., Budde, M., Bergstrom, B. & MF 4434 Study Group. Oral ibandronate for the treatment of metastatic bone disease in breast cancer: efficacy and safety results from a randomized, double-blind, placebo-controlled trial. Ann. Oncol. 15, 743–750 (2004).

    Article  CAS  Google Scholar 

  28. El-Abdaimi, K. et al. Pamidronate prevents the development of skeletal metastasis in nude mice transplanted with human breast cancer cells by reducing tumor burden within bone. Int. J. Oncol. 22, 883–890 (2003).

    CAS  PubMed  Google Scholar 

  29. van der Pluijm, G. et al. Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res. 65, 7682–7690 (2005).

    Article  CAS  Google Scholar 

  30. Coleman, R.E., Purohit, O.P., Vinholes, J.J. & Zekri, J. High dose pamidronate. Cancer 80, 1686–1690 (1997).

    Article  CAS  Google Scholar 

  31. Coleman, R. On the horizon: can bisphosphonates prevent bone metastases? Breast 16 Suppl 3, S21–S27 (2007).

    Article  Google Scholar 

  32. Diel, I.J. et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N. Engl. J. Med. 339, 357–363 (1998).

    Article  CAS  Google Scholar 

  33. Ray, P., De, A., Min, J.J., Tsien, R.Y. & Gambhir, S.S. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res. 64, 1323–1330 (2004).

    Article  CAS  Google Scholar 

  34. Voorhoeve, P.M. & Agami, R. The tumor-suppressive functions of the human INK4A locus. Cancer Cell 4, 311–319 (2003).

    Article  CAS  Google Scholar 

  35. Reynisdóttir, I., Polyak, K., Iavarone, A. & Massagué, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-β. Genes Dev. 9, 1831–1845 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Kang laboratory for insightful discussions and technical suggestions, J. Yingling (Eli Lilly and Company) for the TGF-β receptor I kinase inhibitor and suggestions for the manuscript, S. Gambhir (Stanford University) for triple-reporter plasmids, R. Agami (The Netherlands Cancer Institute) for pRS-GFP, T. Guise and K. Mohammad for technical advice in bone histology and G. Hu for statistical support. Y.K. is a Champalimaud Investigator funded by a Department of Defense Era of Hope Scholar Award and grants from the American Cancer Society, the Susan G. Komen Foundation and the New Jersey Commission on Cancer Research. M.K. is supported by a predoctoral fellowship from the Department of Defense Breast Cancer Research Program.

Author information

Authors and Affiliations

Authors

Contributions

Y.K. and M.K. designed experiments. Y.K. supervised experiments. M.K. and J.Y. performed the experiments. M.K., J.Y., X.L., S.X. and D.A.L. contributed to molecular cloning and engineering of cell lines. M.K. and Y.K. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yibin Kang.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–10 and Supplementary Methods (PDF 841 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Korpal, M., Yan, J., Lu, X. et al. Imaging transforming growth factor-β signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 15, 960–966 (2009). https://doi.org/10.1038/nm.1943

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1943

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing