Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation

Abstract

Integrins are the major adhesion receptors of leukocytes and platelets. β1 and β2 integrin function on leukocytes is crucial for a successful immune response and the platelet integrin αIIbβ3 initiates the process of blood clotting through binding fibrinogen1,2,3. Integrins on circulating cells bind poorly to their ligands but become active after 'inside-out' signaling through other membrane receptors4,5. Subjects with leukocyte adhesion deficiency-1 (LAD-I) do not express β2 integrins because of mutations in the gene specifying the β2 subunit, and they suffer recurrent bacterial infections6,7. Mutations affecting αIIbβ3 integrin cause the bleeding disorder termed Glanzmann's thrombasthenia3. Subjects with LAD-III show symptoms of both LAD-I and Glanzmann's thrombasthenia. Their hematopoietically-derived cells express β1, β2 and β3 integrins, but defective inside-out signaling causes immune deficiency and bleeding problems8. The LAD-III lesion has been attributed to a C → A mutation in the gene encoding calcium and diacylglycerol guanine nucleotide exchange factor (CALDAGGEF1; official symbol RASGRP2) specifying the CALDAG-GEF1 protein9, but we show that this change is not responsible for the LAD-III disorder. Instead, we identify mutations in the KINDLIN3 (official symbol FERMT3) gene specifying the KINDLIN-3 protein as the cause of LAD-III in Maltese and Turkish subjects. Two independent mutations result in decreased KINDLIN3 messenger RNA levels and loss of protein expression. Notably, transfection of the subjects' lymphocytes with KINDLIN3 complementary DNA but not CALDAGGEF1 cDNA reverses the LAD-III defect, restoring integrin-mediated adhesion and migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CALDAGGEF1 gene C → A base change has no effect on mRNA and protein levels or on deficient LAD-III B cell adhesion and migration.
Figure 2: Mutations in the KINDLIN3 gene.
Figure 3: Analysis of mutated KINDLIN3 mRNA in subjects with LAD-III and their relatives.
Figure 4: Adhesion and migration characteristics of LAD-III B cells expressing wild-type Kindlin-3.

Similar content being viewed by others

References

  1. von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  Google Scholar 

  2. Hogg, N., Laschinger, M., Giles, K. & McDowall, A. T-cell integrins: more than just sticking points. J. Cell Sci. 116, 4695–4705 (2003).

    Article  CAS  Google Scholar 

  3. Coller, B.S. & Shattil, S.J. The GPIIb/IIIa (integrin αIIbβ3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 112, 3011–3025 (2008).

    Article  CAS  Google Scholar 

  4. Kellermann, S.A., Dell, C.L., Hunt, S.W. III & Shimizu, Y. Genetic analysis of integrin activation in T lymphocytes. Immunol. Rev. 186, 172–188 (2002).

    Article  CAS  Google Scholar 

  5. Kinashi, T. Intracellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 5, 546–559 (2005).

    Article  CAS  Google Scholar 

  6. Anderson, D.C. & Springer, T.A. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu. Rev. Med. 38, 175–194 (1987).

    Article  CAS  Google Scholar 

  7. Hogg, N. & Bates, P.A. Genetic analysis of integrin function in man: LAD-I and other syndromes. Matrix Biol. 19, 211–222 (2000).

    Article  CAS  Google Scholar 

  8. Etzioni, A. & Alon, R. Leukocyte adhesion deficiency III: a group of integrin activation defects in hematopoietic lineage cells. Curr. Opin. Allergy Clin. Immunol. 4, 485–490 (2004).

    Article  CAS  Google Scholar 

  9. Pasvolsky, R. et al. A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets. J. Exp. Med. 204, 1571–1582 (2007).

    Article  CAS  Google Scholar 

  10. Kuijpers, T.W. et al. Leukocyte adhesion deficiency type 1 (LAD-I)/variant. A novel immunodeficiency syndrome characterized by dysfunctional β2 integrins. J. Clin. Invest. 100, 1725–1733 (1997).

    Article  CAS  Google Scholar 

  11. McDowall, A. et al. A novel form of integrin dysfunction involving β1, β2, and β3 integrins. J. Clin. Invest. 111, 51–60 (2003).

    Article  CAS  Google Scholar 

  12. Kuijpers, T.W. et al. Natural history and early diagnosis of LAD-I/variant syndrome. Blood 109, 3529–3537 (2007).

    Article  CAS  Google Scholar 

  13. Springett, G.M., Kawasaki, H. & Spriggs, D.R. Non-kinase second-messenger signaling: new pathways with new promise. Bioessays 26, 730–738 (2004).

    Article  CAS  Google Scholar 

  14. Stone, J.C. Regulation of Ras in lymphocytes: get a GRP. Biochem. Soc. Trans. 34, 858–861 (2006).

    Article  CAS  Google Scholar 

  15. Clyde-Smith, J. et al. Characterization of RasGRP2, a plasma membrane-targeted, dual specificity Ras/Rap exchange factor. J. Biol. Chem. 275, 32260–32267 (2000).

    Article  CAS  Google Scholar 

  16. Crittenden, J.R. et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat. Med. 10, 982–986 (2004).

    Article  CAS  Google Scholar 

  17. Bergmeier, W. et al. Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J. Clin. Invest. 117, 1699–1707 (2007).

    Article  CAS  Google Scholar 

  18. Ghandour, H., Cullere, X., Alvarez, A., Luscinskas, F.W. & Mayadas, T.N. Essential role for Rap1 GTPase and its guanine exchange factor CalDAG-GEFI in LFA-1 but not VLA-4 integrin mediated human T-cell adhesion. Blood 110, 3682–3690 (2007).

    Article  CAS  Google Scholar 

  19. Cifuni, S.M., Wagner, D.D. & Bergmeier, W. CalDAG-GEFI and protein kinase C represent alternative pathways leading to activation of integrin alphaIIbß3 in platelets. Blood 112, 1696–1703 (2008).

    Article  CAS  Google Scholar 

  20. Moser, M., Nieswandt, B., Ussar, S., Pozgajova, M. & Fassler, R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat. Med. 14, 325–330 (2008).

    Article  CAS  Google Scholar 

  21. Moser, M. et al. Kindlin-3 is required for β2 integrin–mediated leukocyte adhesion to endothelial cells. Nat. Med. Advance online publication doi:10.1038/nm.1921 (22 February 2009).

  22. Ussar, S., Wang, H.V., Linder, S., Fassler, R. & Moser, M. The Kindlins: subcellular localization and expression during murine development. Exp. Cell Res. 312, 3142–3151 (2006).

    Article  CAS  Google Scholar 

  23. Larjava, H., Plow, E.F. & Wu, C. Kindlins: essential regulators of integrin signalling and cell-matrix adhesion. EMBO Rep. 9, 1203–1208 (2008).

    Article  CAS  Google Scholar 

  24. Siegel, D.H. et al. Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am. J. Hum. Genet. 73, 174–187 (2003).

    Article  CAS  Google Scholar 

  25. Jobard, F. et al. Identification of mutations in a new gene encoding a FERM family protein with a pleckstrin homology domain in Kindler syndrome. Hum. Mol. Genet. 12, 925–935 (2003).

    Article  CAS  Google Scholar 

  26. Garcia-Alvarez, B. et al. Structural determinants of integrin recognition by talin. Mol. Cell. 11, 49–58 (2003).

    Article  CAS  Google Scholar 

  27. Weinstein, E.J. et al. URP1: a member of a novel family of PH and FERM domain-containing membrane-associated proteins is significantly over-expressed in lung and colon carcinomas. Biochim. Biophys. Acta. 1637, 207–216 (2003).

    Article  CAS  Google Scholar 

  28. Kloeker, S. et al. The Kindler syndrome protein is regulated by transforming growth factor-β and involved in integrin-mediated adhesion. J. Biol. Chem. 279, 6824–6833 (2004).

    Article  CAS  Google Scholar 

  29. Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008).

    Article  CAS  Google Scholar 

  30. Ma, Y.Q., Qin, J., Wu, C. & Plow, E.F. Kindlin-2 (Mig-2): a co-activator of β3 integrins. J. Cell Biol. 181, 439–446 (2008).

    Article  CAS  Google Scholar 

  31. Mory, A. et al. Kindlin-3: a new gene involved in the pathogenesis of LAD-III. Blood 112, 2591 (2008).

    Article  CAS  Google Scholar 

  32. Campbell, I.D. & Ginsberg, M.H. The talin-tail interaction places integrin activation on FERM ground. Trends Biochem. Sci. 29, 429–435 (2004).

    Article  CAS  Google Scholar 

  33. Calderwood, D.A. et al. The phosphotyrosine binding-like domain of talin activates integrins. J. Biol. Chem. 277, 21749–21758 (2002).

    Article  CAS  Google Scholar 

  34. Harris, E.S. et al. A novel syndrome of variant leukocyte adhesion deficiency involving defects in adhesion mediated by β1 and β2 integrins. Blood 97, 767–776 (2001).

    Article  CAS  Google Scholar 

  35. Alon, R. et al. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 101, 4437–4445 (2003).

    Article  CAS  Google Scholar 

  36. Smith, A. et al. A talin-dependent LFA-1 focal zone is formed by rapidly migrating T lymphocytes. J. Cell Biol. 170, 141–151 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to R. Fässler and D. Wagner for helpful discussion; J. Crittenden and A. Graybiel (Massachusetts Institute of Technology) for antibodies to CALDAG-GEF1, cDNA constructs and helpful discussion; and J. Hancock (University of Queensland Medical School) for CALDAGGEF1 constructs. We are also grateful to our Cancer Research UK London Research Institute colleagues D. Harvey for generation of the EBV-transformed cell lines and G. Kelly for help with the statistical analyses. L. S. was supported by a Marie Curie Individual Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

L.S., K.H., I.T., M.F. and N.H. designed the experiments; L.S., K.H., A.M., I.P. and R.E. performed the experiments; and A.M. provided subject blood samples; S.U. provided the antibody to Kindlin-3; M.M. provided the EGFP–Kindlin-3 construct;. L.S., K.H., A.M., I.P., M.F., I.T. and N.H. were involved in data analyses. All authors contributed to the writing or editing of the manuscript. N.H. supervised the project and wrote the initial manuscript.

Corresponding author

Correspondence to Nancy Hogg.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–5 and Supplementary Methods (PDF 5122 kb)

Supplementary Video 1

GFP-expressing LAD-III B cells (Turkish family three) migrating on ICAM-1. (MOV 7433 kb)

Supplementary Video 2

CALDAG-GEF-1–expressing LAD-III B cells (Turkish family three) migrating on ICAM-1. (MOV 4545 kb)

Supplementary Video 3

Kindlin-3–expressing LAD-III B cells (Turkish family three) migrating on ICAM-1. (MOV 8949 kb)

Supplementary Video 4

Kindlin-3–expressing LAD-III B cells (Turkish family three) migrating on ICAM-1. (MOV 9724 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, L., Howarth, K., McDowall, A. et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 15, 306–312 (2009). https://doi.org/10.1038/nm.1931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing