Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of endocytosis via the oxygen-sensing pathway

Abstract

Tumor hypoxia is associated with disease progression, resistance to conventional cancer therapies and poor prognosis1,2. Hypoxia, by largely unknown mechanisms, leads to deregulated accumulation of and signaling via receptor tyrosine kinases (RTKs) that are critical for driving oncogenesis. Here, we show that hypoxia or loss of von Hippel–Lindau protein—the principal negative regulator of hypoxia-inducible factor (HIF)3—prolongs the activation of epidermal growth factor receptor that is attributable to lengthened receptor half-life and retention in the endocytic pathway. The deceleration in endocytosis is due to the attenuation of Rab5-mediated early endosome fusion via HIF-dependent downregulation of a critical Rab5 effector, rabaptin-5, at the level of transcription. Primary kidney and breast tumors with strong hypoxic signatures show significantly lower expression of rabaptin-5 RNA and protein. These findings reveal a general role of the oxygen-sensing pathway in endocytosis and support a model in which tumor hypoxia or oncogenic activation of HIF prolongs RTK-mediated signaling by delaying endocytosis-mediated deactivation of receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of VHL prolongs turnover and downstream signaling of EGFR in a HIF-dependent manner.
Figure 2: Regulation of Rab5-mediated endosome fusion is HIF dependent and influences the clearance rate of internalized EGF.
Figure 3: Hypoxia or loss of VHL attenuates the expression of the Rab5 effector rabaptin-5.
Figure 4: Expression of rabaptin-5 is sufficient to modulate early endosome fusion and is inversely associated with the physical recruitment of HIF to the HRE on RABEP1 promoter.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Gene Expression Omnibus

References

  1. Harris, A.L. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

    Article  CAS  Google Scholar 

  2. Semenza, G.L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).

    Article  CAS  Google Scholar 

  3. Kaelin, W.G. Jr. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2, 673–682 (2002).

    Article  CAS  Google Scholar 

  4. Zhong, H. et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59, 5830–5835 (1999).

    CAS  PubMed  Google Scholar 

  5. Huang, L.E. & Bunn, H.F. Hypoxia-inducible factor and its biomedical relevance. J. Biol. Chem. 278, 19575–19578 (2003).

    Article  CAS  Google Scholar 

  6. Kondo, K., Kim, W.Y., Lechpammer, M. & Kaelin, W.G. Jr. Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol. 1, E83 (2003).

    Article  Google Scholar 

  7. Roberts, A.M. & Ohh, M. Beyond the hypoxia-inducible factor-centric tumour suppressor model of von Hippel-Lindau. Curr. Opin. Oncol. 20, 83–89 (2008).

    Article  CAS  Google Scholar 

  8. Kondo, K., Klco, J., Nakamura, E., Lechpammer, M. & Kaelin, W.G. Jr. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1, 237–246 (2002).

    Article  CAS  Google Scholar 

  9. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    Article  CAS  Google Scholar 

  10. Franovic, A. et al. Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc. Natl. Acad. Sci. USA. 104, 13092–13097 (2007).

    Article  CAS  Google Scholar 

  11. Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347–361 (2003).

    Article  Google Scholar 

  12. Koochekpour, S. et al. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol. Cell. Biol. 19, 5902–5912 (1999).

    Article  CAS  Google Scholar 

  13. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat. Cell Biol. 2, 423–427 (2000).

    Article  CAS  Google Scholar 

  14. Ceresa, B.P. & Schmid, S.L. Regulation of signal transduction by endocytosis. Curr. Opin. Cell Biol. 12, 204–210 (2000).

    Article  CAS  Google Scholar 

  15. Pfeffer, S.R. Motivating endosome motility. Nat. Cell Biol. 1, E145–E147 (1999).

    Article  CAS  Google Scholar 

  16. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728 (1992).

    Article  CAS  Google Scholar 

  17. Kim, W.Y. et al. Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. EMBO J. 25, 4650–4662 (2006).

    Article  CAS  Google Scholar 

  18. Feng, Y., Press, B. & Wandinger-Ness, A. Rab 7: an important regulator of late endocytic membrane traffic. J. Cell Biol. 131, 1435–1452 (1995).

    Article  CAS  Google Scholar 

  19. van der Sluijs, S.P. et al. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70, 729–740 (1992).

    Article  CAS  Google Scholar 

  20. Woodman, P.G. Biogenesis of the sorting endosome: the role of Rab5. Traffic 1, 695–701 (2000).

    Article  CAS  Google Scholar 

  21. Korobko, E.V., Palgova, I.V., Kiselev, S.L. & Korobko, I.V. Apoptotic cleavage of rabaptin-5-like proteins and a model for rabaptin-5 inactivation in apoptosis. Cell Cycle. 5, 1854–1858 (2006).

    Article  CAS  Google Scholar 

  22. Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83, 423–432 (1995).

    Article  CAS  Google Scholar 

  23. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 (1997).

    Article  CAS  Google Scholar 

  24. Lippe, R., Horiuchi, H., Runge, A. & Zerial, M. Expression, purification, and characterization of Rab5 effector complex, rabaptin-5/rabex-5. Methods Enzymol. 329, 132–145 (2001).

    Article  CAS  Google Scholar 

  25. Koeman, J.M. et al. Somatic pairing of chromosome 19 in renal oncocytoma is associated with deregulated ELGN2-mediated oxygen-sensing response. PLoS Genet. 4, e1000176 (2008).

    Article  Google Scholar 

  26. Hsu, T., Adereth, Y., Kose, N. & Dammai, V. Endocytic function of von Hippel-Lindau tumor suppressor protein regulates surface localization of fibroblast growth factor receptor 1 and cell motility. J. Biol. Chem. 281, 12069–12080 (2006).

    Article  CAS  Google Scholar 

  27. Walmsley, S.R. et al. Neutrophils from patients with heterozygous germline mutations in the von Hippel Lindau protein (pVHL) display delayed apoptosis and enhanced bacterial phagocytosis. Blood 108, 3176–3178 (2006).

    Article  CAS  Google Scholar 

  28. Slepnev, V.I. & De, C.P. Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat. Rev. Neurosci. 1, 161–172 (2000).

    Article  CAS  Google Scholar 

  29. Hoffman, M.A. et al. von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum. Mol. Genet. 10, 1019–1027 (2001).

    Article  CAS  Google Scholar 

  30. Lonergan, K.M. et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol. 18, 732–741 (1998).

    Article  CAS  Google Scholar 

  31. Maxwell, P.H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  Google Scholar 

  32. Kondo, K. et al. Comprehensive mutational analysis of the VHL gene in sporadic renal cell carcinoma: relationship to clinicopathological parameters. Genes Chromosom. Cancer. 34, 58–68 (2002).

    Article  CAS  Google Scholar 

  33. Lonergan, K.M. et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol. Cell. Biol. 18, 732–741 (1998).

    Article  CAS  Google Scholar 

  34. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287–1296 (1994).

    Article  CAS  Google Scholar 

  35. Mattera, R., Arighi, C.N., Lodge, R., Zerial, M. & Bonifacino, J.S. Divalent interaction of the GGAs with the Rabaptin-5–Rabex-5 complex. EMBO J. 22, 78–88 (2003).

    Article  CAS  Google Scholar 

  36. Heo, W.D. et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461 (2006).

    Article  CAS  Google Scholar 

  37. Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J. & van Deurs, B. Rab7: a key to lysosome biogenesis. Mol. Biol. Cell 11, 467–480 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institutes of Health Research (CIHR MOP77718 to M.O., MOP37778 to P.A.M. and CIHR team grant to M.P.). Y.W. and O.R. are recipients of CIHR postdoctoral fellowships. M.S.I. and M.O. are Canada Research Chairs.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. designed and performed experiments and wrote the manuscript. O.R. performed EMSA. M.S.Y. performed ChIP analysis. G.F. performed immunofluorescence and mRNA expression analyses of breast tumor samples. A.J.E. performed CCRCC immunohistology. J.L.M performed western blot analysis of CCRCC samples. B.E.H. and S.C.H. performed fluorescence microscopy of MEFs. B.W. and K.A.F. performed western blot and mRNA expression analyses of CCRCC samples. M.S.I., W.Y.K, B.T.T., S.G., M.P. and P.A.M. contributed conceptually to the project and manuscript. M.O. directed the project, designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Michael Ohh.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Results, Supplementary Methods and Supplementary References (PDF 8943 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Roche, O., Yan, M. et al. Regulation of endocytosis via the oxygen-sensing pathway. Nat Med 15, 319–324 (2009). https://doi.org/10.1038/nm.1922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1922

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing