Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy

Abstract

The extracellular-regulated kinases ERK1 and ERK2 (commonly referred to as ERK1/2) have a crucial role in cardiac hypertrophy. ERK1/2 is activated by mitogen-activated protein kinase kinase-1 (MEK1) and MEK2 (commonly referred to as MEK1/2)-dependent phosphorylation in the TEY motif of the activation loop, but how ERK1/2 is targeted toward specific substrates is not well understood. Here we show that autophosphorylation of ERK1/2 on Thr188 directs ERK1/2 to phosphorylate nuclear targets known to cause cardiac hypertrophy. Thr188 autophosphorylation requires the activation and assembly of the entire Raf-MEK-ERK kinase cascade, phosphorylation of the TEY motif, dimerization of ERK1/2 and binding to G protein βγ subunits released from activated Gq. Thr188 phosphorylation of ERK1/2 was observed in isolated cardiomyocytes induced to undergo hypertrophic growth, in mice upon stimulation of Gq-coupled receptors or after aortic banding and in failing human hearts. Experiments using transgenic mouse models carrying mutations at the Thr188 phosphorylation site of ERK2 suggested a causal relationship to cardiac hypertrophy. We propose that specific phosphorylation events on ERK1/2 integrate differing upstream signals (Raf1-MEK1/2 or G protein–coupled receptor–Gq) to induce cardiac hypertrophy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gβγ-induced autophosphorylation of Erk2 at Thr188.
Figure 2: Hypertrophic stimuli induce a stable interaction of Gβγ with Raf1 and Erk1/2 and induce Thr188 phosphorylation of Erk1/2.
Figure 3: Thr188 phosphorylation is crucial for hypertrophy of NRCMs and cardiac hypertrophy.
Figure 4: Activation of the entire MAPK cascade is necessary for interaction of Gβγ with Erk1/2.
Figure 5: Thr188 phosphorylation promotes nuclear localization of Erk1/2.
Figure 6: Time courses and mechanistic model for differential activation of the MAPK cascade.

Similar content being viewed by others

References

  1. Sugden, P.H. & Clerk, A. Cellular mechanisms of cardiac hypertrophy. J. Mol. Med. 76, 725–746 (1998).

    Article  CAS  Google Scholar 

  2. Wettschureck, N. et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gαq/Gα11 in cardiomyocytes. Nat. Med. 7, 1236–1240 (2001).

    Article  CAS  Google Scholar 

  3. Lips, D.J., deWindt, L.J. & van Kraaij, D.J.W. & Doevendans, P.A. Molecular determinants of myocardial hypertrophy and failure: alternative pathways for beneficial and maladaptive hypertrophy. Eur. Heart J. 24, 883–896 (2003).

    Article  CAS  Google Scholar 

  4. Muslin, A.J. Role of Raf proteins in cardiac hypertrophy and cardiomyocyte survival. Trends Cardiovasc. Med. 15, 225–229 (2005).

    Article  CAS  Google Scholar 

  5. Glennon, P.E. et al. Depletion of mitogen-activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ. Res. 78, 954–961 (1996).

    Article  CAS  Google Scholar 

  6. Bueno, O.F. et al. The MEK1–ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19, 6341–6350 (2000).

    Article  CAS  Google Scholar 

  7. Takeishi, Y. et al. Src and multiple MAP kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: comparison with acute mechanical stress. J. Mol. Cell. Cardiol. 33, 1637–1648 (2001).

    Article  CAS  Google Scholar 

  8. Haq, S. et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103, 670–677 (2001).

    Article  CAS  Google Scholar 

  9. Purcell, N.H. et al. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 104, 14074–14079 (2007).

    Article  CAS  Google Scholar 

  10. Rossomando, A.J. et al. Identification of Tyr-185 as the site of tyrosine autophosphorylation of recombinant mitogen-activated protein kinase p42mapk. Proc. Natl. Acad. Sci. USA 89, 5779–5783 (1992).

    Article  CAS  Google Scholar 

  11. Seger, R. & Krebs, E.G. The MAPK signalling cascade. FASEB J. 9, 726–735 (1995).

    Article  CAS  Google Scholar 

  12. Luttrell, L.M. 'Location, location, location': activation and targeting of MAP kinases by G protein–coupled receptors. J. Mol. Endocrinol. 30, 117–126 (2003).

    Article  CAS  Google Scholar 

  13. Caunt, C.J., Finch, A.R., Sedgley, K.R. & McArdle, C.A. Seven-transmembrane receptor signalling and ERK compartmentalization. Trends Endocrinol. Metab. 17, 276–283 (2006).

    Article  CAS  Google Scholar 

  14. Torii, S., Nakayama, K., Yamamoto, T. & Nishida, E. Regulatory mechanisms and function of ERK MAP kinases. J. Biochem. 136, 557–561 (2004).

    Article  CAS  Google Scholar 

  15. Tohgo, A. et al. The stability of the G protein–coupled receptor–β-arrestin interaction determines the mechanism and functional consequence of ERK activation. J. Biol. Chem. 278, 6258–6267 (2003).

    Article  CAS  Google Scholar 

  16. Crespo, P., Xu, N., Simonds, W.F. & Gutkind, J.S. Ras-dependent activation of MAP kinase pathway mediated by G-protein βγ subunits. Nature 369, 418–420 (1994).

    Article  CAS  Google Scholar 

  17. Slupsky, J.R. et al. Binding of Gβγ subunits to cRaf1 downregulates G protein-coupled receptor signalling. Curr. Biol. 9, 971–974 (1999).

    Article  CAS  Google Scholar 

  18. Faure, M., Voyno-Yasenetskaya, T.A. & Bourne, H.R. cAMP and βγ subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J. Biol. Chem. 269, 7851–7854 (1994).

    CAS  PubMed  Google Scholar 

  19. Schwindinger, W.F. & Robishaw, J.D. Heterotrimeric G protein βγ dimers in growth and differentiation. Oncogene 20, 1653–1660 (2001).

    Article  CAS  Google Scholar 

  20. Tachibana, H., Naga Prasad, S.V., Lefkowitz, R.J., Koch, W.J. & Rockman, H.A. Level of β-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. Circulation 111, 591–597 (2005).

    Article  CAS  Google Scholar 

  21. Li, Z. et al. Effects of two Gβγ-binding proteins—N-terminally truncated phosducin and β-adrenergic receptor kinase C terminus (βARKct)—in heart failure. Gene Ther. 10, 1354–1361 (2003).

    Article  CAS  Google Scholar 

  22. Mansour, S.J. et al. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265, 966–970 (1994).

    Article  CAS  Google Scholar 

  23. Schmitt, J.P. et al. Consequences of pressure overload on sarcomere protein mutation–induced hypertrophic cardiomyopathy. Circulation 108, 1133–1138 (2003).

    Article  Google Scholar 

  24. Thomas, W.G. et al. Adenoviral-directed expression of the type 1A angiotensin receptor promotes cardiomyocyte hypertrophy via transactivation of the epidermal growth factor receptor. Circ. Res. 90, 135–142 (2002).

    Article  CAS  Google Scholar 

  25. Brown, J.H. et al. Pathways and roadblocks in muscarinic receptor–mediated growth regulation. Life Sci. 60, 1077–1084 (1997).

    Article  CAS  Google Scholar 

  26. Sakata, Y., Hoit, B.D., Liggett, S.B., Walsh, R.A. & Dorn, G.W. II. Decompensation of pressure-overload hypertrophy in Gαq-overexpressing mice. Circulation 97, 1488–1495 (1998).

    Article  CAS  Google Scholar 

  27. Akhter, S.A. et al. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280, 574–577 (1998).

    Article  CAS  Google Scholar 

  28. Rohrbach, S. et al. Neuregulin in cardiac hypertrophy in rats with aortic stenosis. Differential expression of erbB2 and erbB4 receptors. Circulation 100, 407–412 (1999).

    Article  CAS  Google Scholar 

  29. Baliga, R.R. et al. NRG-1–induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK. Am. J. Physiol. 277, H2026–H2037 (1999).

    CAS  PubMed  Google Scholar 

  30. Lorenz, K., Lohse, M.J. & Quitterer, U. Protein kinase C switches the Raf kinase inhibitor from Raf-1 to GRK-2. Nature 426, 574–579 (2003).

    Article  CAS  Google Scholar 

  31. Umemori, H. et al. Activation of the G protein Gq/11 through tyrosine phosphorylation of the α subunit. Science 276, 1878–1881 (1997).

    Article  CAS  Google Scholar 

  32. Luo, J., Busillo, J.M. & Benovic, J.L. M3 muscarinic acetylcholine receptor–mediated signaling is regulated by distinct mechanisms. Mol. Pharmacol. 74, 338–347 (2008).

    Article  CAS  Google Scholar 

  33. Khokhlatchev, A.V. et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605–615 (1998).

    Article  CAS  Google Scholar 

  34. Hartkamp, J., Troppmair, J. & Rapp, U.R. The JNK/SAPK activator mixed lineage kinase 3 (MLK3) transforms NIH 3T3 cells in a MEK-dependent fashion. Cancer. Res. 59, 2195–2202 (1999).

    CAS  PubMed  Google Scholar 

  35. Bogoyevitch, M.A. & Sudgen, P.H. The role of protein kinases in adaptational growth of the heart. Int. J. Biochem. Cell. Biol. 28, 1–12 (1996).

    Article  CAS  Google Scholar 

  36. Bueno, O.F. & Molkentin, J.D. Involvement of extracellular signal–regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ. Res. 91, 776–781 (2002).

    Article  CAS  Google Scholar 

  37. Zhong, W. et al. Hypertrophic growth in cardiac myocytes is mediated by Myc through a cyclin D2–dependent pathway. EMBO J. 25, 3869–3879 (2006).

    Article  CAS  Google Scholar 

  38. Markou, T., Hadzopoulou-Cladarasb, M. & Lazou, A. Phenylephrine induces activation of CREB in adult rat cardiac myocytes through MSK1 and PKA signaling pathways. J. Mol. Cell. Cardiol. 37, 1001–1011 (2004).

    Article  CAS  Google Scholar 

  39. Valks, D.M. et al. Phenylephrine promotes phosphorylation of Bad in cardiac myocytes through the extracellular signal–regulated kinases 1/2 and protein kinase A. J. Mol. Cell. Cardiol. 34, 749–763 (2002).

    Article  CAS  Google Scholar 

  40. Dorn, G.W. II & Force, T. Protein kinase cascades in regulation of cardiac hypertrophy. J. Clin. Invest. 115, 527–537 (2005).

    Article  CAS  Google Scholar 

  41. Garrington, T.P. & Johnson, G.L. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11, 211–218 (1999).

    Article  CAS  Google Scholar 

  42. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  Google Scholar 

  43. Pouysségur, J., Volmat, V. & Lenormand, P. Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem. Pharmacol. 64, 755–763 (2002).

    Article  Google Scholar 

  44. Brunet, A. et al. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor–induced gene expression and cell cycle entry. EMBO J. 18, 664–674 (1999).

    Article  CAS  Google Scholar 

  45. Cobb, M.H. & Goldsmith, E.J. Dimerization in MAP kinase signaling. Trends Biochem. Sci. 25, 7–9 (2000).

    Article  CAS  Google Scholar 

  46. Müller, S., Heckman, M. & Lohse, M.J. Specific enhancement of β-adrenergic receptor kinase activity by defined Gβ and Gγ subunits. Proc. Natl. Acad. Sci. USA 90, 10439–10443 (1993).

    Article  Google Scholar 

  47. Frank, M., Thümer, L., Lohse, M.J. & Bünemann, M. G protein activation without subunit dissociation depends on Gαi-specific region. J. Biol. Chem. 280, 24584–24590 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank U. Quitterer for stimulating discussions during the early phase of this work; M. Maier-Peuschel, M. Vidal, K. Deiß, D. Calebiro, K. Hadameck, M. Frank, K. von Hayn and A. Zürn for their help; M. Fischer, M. Babl, M. Hoffmann, N. Ziegler and C. Dees for excellent technical assistance; S. Jacobs for help with the immunohistochemistry; and U. Zabel and R. Schreck for helpful discussion. This work was supported by the Deutsche Forschungsgemeinschaft, the Leducq Foundation and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

K.L. performed all of the experiments and their analyses; J.P.S. performed the aortic banding surgery and provided advice for echocardiography; E.M.S. generated the transgenic mouse lines; and M.J.L. and K.L. conceived the study and wrote the manuscript. E.M.S. and particularly J.P.S. provided critical comments on the manuscript.

Corresponding author

Correspondence to Kristina Lorenz.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–8 and Supplementary Methods (PDF 762 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, K., Schmitt, J., Schmitteckert, E. et al. A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med 15, 75–83 (2009). https://doi.org/10.1038/nm.1893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1893

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing