Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RPN2 gene confers docetaxel resistance in breast cancer

A Corrigendum to this article was published on 01 October 2008

Abstract

Drug resistance acquired by cancer cells has led to treatment failure. To understand the regulatory network underlying docetaxel resistance in breast cancer cells and to identify molecular targets for therapy, we tested small interfering RNAs (siRNAs) against 36 genes whose expression was elevated in human nonresponders to docetaxel for the ability to promote apoptosis of docetaxel-resistant human breast cancer cells (MCF7-ADR cells). The results indicate that the downregulation of the gene encoding ribopholin II (RPN2), which is part of an N-oligosaccharyl transferase complex, most efficiently induces apoptosis of MCF7-ADR cells in the presence of docetaxel. RPN2 silencing induced reduced glycosylation of the P-glycoprotein, as well as decreased membrane localization, thereby sensitizing MCF7-ADR cells to docetaxel. Moreover, in vivo delivery of siRNA specific for RPN2 markedly reduced tumor growth in two types of models for drug resistance. Thus, RPN2 silencing makes cancer cells hypersensitive response to docetaxel, and RPN2 might be a new target for RNA interference–based therapeutics against drug resistance.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: RNAi cell transfection array analysis in cultured breast cancer cells.
Figure 2: Apoptosis of MCF7-ADR cells transduced with RPN2 siRNA.
Figure 3: Induction of RPN2 and MDR1 expression by docetaxel treatment.
Figure 4: Delivery of RPN2 siRNA to docetaxel-resistant breast tumors.
Figure 5: RPN2 siRNA regulates glycosylation of P-glycoprotein (P-gp).

References

  1. Kaufmann, M. et al. International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: review and recommendations. J. Clin. Oncol. 21, 2600–2608 (2003).

    Article  Google Scholar 

  2. Gradishar, W.J. et al. Neoadjuvant docetaxel followed by adjuvant doxorubicin and cyclophosphamide in patients with stage III breast cancer. Ann. Oncol. 16, 1297–1304 (2005).

    Article  CAS  Google Scholar 

  3. Formenti, S.C. et al. Preoperative twice-weekly paclitaxel with concurrent radiation therapy followed by surgery and postoperative doxorubicin-based chemotherapy in locally advanced breast cancer: A phase I/II trial. J. Clin. Oncol. 21, 864–870 (2003).

    Article  CAS  Google Scholar 

  4. Engels, F.K., Sparreboom, A., Mathot, R.A. & Verweij, J. Potential for improvement of docetaxel-based chemotherapy: a pharmacological review. Br. J. Cancer 93, 173–177 (2005).

    Article  CAS  Google Scholar 

  5. Crown, J., O'Leary, M. & Ooi, W.S. Docetaxel & paclitaxel in the treatment of breast cancer: a review of clinical experience. Oncologist 9, 24–32 (2004).

    Article  CAS  Google Scholar 

  6. Jones, S.E. et al. Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J. Clin. Oncol. 23, 5542–5551 (2005).

    Article  CAS  Google Scholar 

  7. Bonneterre, J. et al. Efficacy and safety of docetaxel (Taxotere) in heavily pretreated advanced breast cancer patients: the French compassionate use programme experience. Eur. J. Cancer 35, 1431–1439 (1999).

    Article  CAS  Google Scholar 

  8. Gottesman, M.M., Pastan, I. & Ambudkar, S.V. P-glycoprotein and multidrug resistance. Curr. Opin. Genet. Dev. 6, 610–617 (1996).

    Article  CAS  Google Scholar 

  9. Duan, Z., Brakora, K.A. & Seiden, M.V. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol. Cancer Ther. 3, 833–838 (2004).

    CAS  PubMed  Google Scholar 

  10. Leslie, E.M., Deeley, R.G. & Cole, S.P. Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology 167, 3–23 (2001).

    Article  CAS  Google Scholar 

  11. Renes, J., de Vries, E.G., Jansen, P.L. & Muller, M. The (patho)physiological functions of the MRP family. Drug Resist. Updat. 3, 289–302 (2000).

    Article  CAS  Google Scholar 

  12. Leonessa, F. & Clarke, R. ATP binding cassette transporters and drug resistance in breast cancer. Endocr. Relat. Cancer 10, 43–73 (2003).

    Article  CAS  Google Scholar 

  13. Lin, J.C., Chang, S.Y., Hsieh, D.S., Lee, C.F. & Yu, D.S. The association of Id-1, MIF and GSTpi with acquired drug resistance in hormone independent prostate cancer cells. Oncol. Rep. 13, 983–988 (2005).

    CAS  PubMed  Google Scholar 

  14. Galimberti, S., Testi, R., Guerrini, F., Fazzi, R. & Petrini, M. The clinical relevance of the expression of several multidrug-resistant–related genes in patients with primary acute myeloid leukemia. J. Chemother. 15, 374–379 (2003).

    CAS  PubMed  Google Scholar 

  15. Burg, D., Riepsaame, J., Pont, C., Mulder, G. & van de Water, B. Peptide-bond modified glutathione conjugate analogs modulate GSTpi function in GSH-conjugation, drug sensitivity and JNK signaling. Biochem. Pharmacol. 71, 268–277 (2006).

    Article  CAS  Google Scholar 

  16. Iwao-Koizumi, K. et al. Prediction of docetaxel response in human breast cancer by gene expression profiling. J. Clin. Oncol. 23, 422–431 (2005).

    Article  CAS  Google Scholar 

  17. Kim, S.J. et al. High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin. Cancer Res. 11, 8425–8430 (2005).

    Article  CAS  Google Scholar 

  18. Kato, K. Adaptor-tagged competitive PCR: a novel method for measuring relative gene expression. Nucleic Acids Res. 25, 4694–4696 (1997).

    Article  CAS  Google Scholar 

  19. Honma, K. et al. Atelocollagen-based gene transfer in cells allows high-throughput screening of gene functions. Biochem. Biophys. Res. Commun. 289, 1075–1081 (2001).

    Article  CAS  Google Scholar 

  20. Honma, K., Miyata, T. & Ochiya, T. The role of atelocollagen-based cell transfection array in high-throughput screening of gene functions and in drug discovery. Curr. Drug Discov. Technol. 1, 287–294 (2004).

    Article  CAS  Google Scholar 

  21. Minakuchi, Y. et al. Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Res. 32, e109 (2004).

    Article  Google Scholar 

  22. Takeshita, F. et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc. Natl. Acad. Sci. USA 102, 12177–12182 (2005).

    Article  CAS  Google Scholar 

  23. Ochiya, T. et al. New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat. Med. 5, 707–710 (1999).

    Article  CAS  Google Scholar 

  24. Ochiya, T., Nagahara, S., Sano, A., Itoh, H. & Terada, M. Biomaterials for gene delivery: atelocollagen-mediated controlled release of molecular medicines. Curr. Gene Ther. 1, 31–52 (2001).

    Article  CAS  Google Scholar 

  25. Crimaudo, C., Hortsch, M., Gausepohl, H. & Meyer, D.I. Human ribophorins I and II: the primary structure and membrane topology of two highly conserved rough endoplasmic reticulum-specific glycoproteins. EMBO J. 6, 75–82 (1987).

    Article  CAS  Google Scholar 

  26. Kelleher, D.J., Kreibich, G. & Gilmore, R. Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell 69, 55–65 (1992).

    Article  CAS  Google Scholar 

  27. Kelleher, D.J. & Gilmore, R. An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16, 47R–62R (2006).

    Article  CAS  Google Scholar 

  28. Loo, T.W., Bartlett, M.C. & Clarke, D.M. The dileucine motif at the COOH terminus of human multidrug resistance P-glycoprotein is important for folding but not activity. J. Biol. Chem. 280, 2522–2528 (2005).

    Article  CAS  Google Scholar 

  29. Ochiya, T., Honma, K., Takeshita, F. & Nagahara, S. Atelocollagen-mediated drug discovery technology. Expert Opin. Drug Discov. 2, 159–167 (2007).

    Article  CAS  Google Scholar 

  30. Tsuruo, T. et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 94, 15–21 (2003).

    Article  CAS  Google Scholar 

  31. Schinkel, A.H., Kemp, S., Dolle, M., Rudenko, G. & Wagenaar, E. N-glycosylation and deletion mutants of the human MDR1 P-glycoprotein. J. Biol. Chem. 268, 7474–7481 (1993).

    CAS  PubMed  Google Scholar 

  32. Kramer, R. et al. Inhibition of N-linked glycosylation of P-glycoprotein by tunicamycin results in a reduced multidrug resistance phenotype. Br. J. Cancer 71, 670–675 (1995).

    Article  CAS  Google Scholar 

  33. Bentley, J., Quinn, D.M., Pitman, R.S., Warr, J.R. & Kellett, G.L. The human KB multidrug-resistant cell line KB-C1 is hypersensitive to inhibitors of glycosylation. Cancer Lett. 115, 221–227 (1997).

    Article  CAS  Google Scholar 

  34. Zhang, Z., Wu, J.Y., Hait, W.N. & Yang, J.M. Regulation of the stability of P-glycoprotein by ubiquitination. Mol. Pharmacol. 66, 395–403 (2004).

    Article  CAS  Google Scholar 

  35. O'Brian, C.A., Ward, N.E., Stewart, J.R. & Chu, F. Prospects for targeting protein kinase C isozymes in the therapy of drug-resistant cancer—an evolving story. Cancer Metastasis Rev. 20, 95–100 (2001).

    Article  CAS  Google Scholar 

  36. Zhan, M. et al. Transcriptional repression of protein kinase Cα via Sp1 by wild type p53 is involved in inhibition of multidrug resistance 1 P-glycoprotein phosphorylation. J. Biol. Chem. 280, 4825–4833 (2005).

    Article  CAS  Google Scholar 

  37. Nieth, C., Priebsch, A., Stege, A. & Lage, H. Modulation of the classical multidrug resistance (MDR) phenotype by RNA interference (RNAi). FEBS Lett. 545, 144–150 (2003).

    Article  CAS  Google Scholar 

  38. Wu, H., Hait, W.N. & Yang, J.M. Small interfering RNA–induced suppression of MDR1 (P-glycoprotein) restores sensitivity to multidrug-resistant cancer cells. Cancer Res. 63, 1515–1519 (2003).

    CAS  Google Scholar 

  39. Muller, C., Laurent, G. & Ling, V. P-glycoprotein stability is affected by serum deprivation and high cell density in multidrug-resistant cells. J. Cell. Physiol. 163, 538–544 (1995).

    Article  CAS  Google Scholar 

  40. Pommier, Y., Sordet, O., Antony, S., Hayward, R.L. & Kohn, K.W. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 23, 2934–2949 (2004).

    Article  CAS  Google Scholar 

  41. Sordet, O., Khan, Q.A., Kohn, K.W. & Pommier, Y. Apoptosis induced by topoisomerase inhibitors. Curr. Med. Chem. Anticancer Agents 3, 271–290 (2003).

    Article  CAS  Google Scholar 

  42. Schott, A.F., Apel, I.J., Nunez, G. & Clarke, M.F. Bcl-XL protects cancer cells from p53-mediated apoptosis. Oncogene 11, 1389–1394 (1995).

    CAS  PubMed  Google Scholar 

  43. Walczak, H., Bouchon, A., Stahl, H. & Krammer, P.H. Tumor necrosis factor-related apoptosis-inducing ligand retains its apoptosis-inducing capacity on Bcl-2– or Bcl-xL–overexpressing chemotherapy-resistant tumor cells. Cancer Res. 60, 3051–3057 (2000).

    CAS  PubMed  Google Scholar 

  44. Reed, J.C. Apoptosis-based therapies. Nat. Rev. Drug Discov. 1, 111–121 (2002).

    Article  CAS  Google Scholar 

  45. Lytle, R.A., Jiang, Z., Zheng, X. & Rich, K.M. BCNU down-regulates anti-apoptotic proteins Bcl-xL and Bcl-2 in association with cell death in oligodendroglioma-derived cells. J. Neurooncol. 68, 233–241 (2004).

    Article  Google Scholar 

  46. Jiang, Z., Zheng, X. & Rich, K.M. Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J. Neurochem. 84, 273–281 (2003).

    Article  CAS  Google Scholar 

  47. Guensberg, P. et al. Bcl-xL antisense oligonucleotides chemosensitize human glioblastoma cells. Chemotherapy 48, 189–195 (2002).

    Article  CAS  Google Scholar 

  48. Tran, N.L. et al. The tumor necrosis factor–like weak inducer of apoptosis (TWEAK)-fibroblast growth factor–inducible 14 (Fn14) signaling system regulates glioma cell survival via NFκB pathway activation and BCL-XL/BCL-W expression. J. Biol. Chem. 280, 3483–3492 (2005).

    Article  CAS  Google Scholar 

  49. Li, Y. et al. Inactivation of nuclear factor κB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res. 65, 6934–6942 (2005).

    Article  CAS  Google Scholar 

  50. Vergniol, J.C., Bruno, R., Montay, G. & Frydman, A. Determination of Taxotere in human plasma by a semi-automated high-performance liquid chromatographic method. J. Chromatogr. 582, 273–278 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Human mammary carcinoma cell lines, MCF7 cells and multidrug-resistant MCF7-ADR cells were provided by Shien-Lab, Medical Oncology, National Cancer Center Hospital of Japan. We gratefully thank S. Noguchi for the initiation of the whole project and for helpful discussion. We also thank H. Inaji, K. Yoshioka and K. Itoh for their kind assistance; J. Miyazaki (Osaka University) for the kind gift of CAG promoter; and A. Inoue and M. Wada for their excellent technical work. This work was supported in part by a grant-in-aid for the Third-Term Comprehensive 10-Year Strategy for Cancer Control of Japan; a grant-in-aid for Scientific Research on Priority Areas Cancer from the Japanese Ministry of Education, Culture, Sports, Science and Technology; and the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation of Japan.

Author information

Authors and Affiliations

Authors

Contributions

K.H. performed the experimental work, data analysis and writing of the first draft of the manuscript. K.K. and T.O. selected the initial set of genes subjected to the screening. K.I.-K., K.K., T.Y. and T.O. participated in the conception, design and coordination of the study. F.T. and Y.Y. performed siRNA delivery in vivo and helped with data analysis. K.N. provided drug-resistant cell lines. S.N. provided delivery molecules. The manuscript was finalized by T.O. with the assistance of all authors.

Corresponding author

Correspondence to Takahiro Ochiya.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6, Supplementary Methods, Supplementary Table 1–2, and Supplementary Note (PDF 489 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Honma, K., Iwao-Koizumi, K., Takeshita, F. et al. RPN2 gene confers docetaxel resistance in breast cancer. Nat Med 14, 939–948 (2008). https://doi.org/10.1038/nm.1858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing