Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tim-3 inhibits T helper type 1–mediated auto- and alloimmune responses and promotes immunological tolerance

Abstract

Although T helper (TH) cell–mediated immunity is required to effectively eliminate pathogens, unrestrained TH activity also contributes to tissue injury in many inflammatory and autoimmune diseases. We report here that the TH type 1 (TH1)-specific Tim-3 (T cell immunoglobulin domain, mucin domain) protein functions to inhibit aggressive TH1-mediated auto- and alloimmune responses. Tim-3 pathway blockade accelerated diabetes in nonobese diabetic mice and prevented acquisition of transplantation tolerance induced by costimulation blockade. These effects were mediated, at least in part, by dampening of the antigen-specific immunosuppressive function of CD4+CD25+ regulatory T cell populations. Our data indicate that the Tim-3 pathway provides an important mechanism to down-regulate TH1-dependent immune responses and to facilitate the development of immunological tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Tim-3 and Tim-3L.
Figure 2: Treatment with both Tim-3 mAb and flTim-3–Ig augments autoimmune diabetes in an adoptive transfer NOD model.
Figure 3: Generation of Tim-3-deficient mice.
Figure 4: Tim-3 contributes to the tolerizing effects of treatment with DST plus anti-CD154 in an MHC-mismatched islet allograft model.
Figure 5: Tim-3 modulates the alloantigen-specific effects of treatment with DST plus anti-CD154 on CD4+CD25+ regulatory T cells.

Similar content being viewed by others

References

  1. Romagnani, S. Lymphokine production by human T cells in disease states. Annu. Rev. Immunol. 12, 227–257 (1994).

    Article  CAS  Google Scholar 

  2. Kamradt, T. & Mitchison, N.A. Tolerance and autoimmunity. N. Engl. J. Med. 344, 655–664 (2001).

    Article  CAS  Google Scholar 

  3. Strom, T.B. et al. The Th1/Th2 paradigm and the allograft response. Curr. Opin. Immunol. 8, 688–693 (1996).

    Article  CAS  Google Scholar 

  4. Li, X.C., Zand, M.S., Li, Y., Zheng, X.X. & Strom, T.B. On histocompatibility barriers, Th1 to Th2 immune deviation, and the nature of the allograft responses. J. Immunol. 161, 2241–2247 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Anderson, G.P. & Coyle, A.J. TH2 and 'TH2-like' cells in allergy and asthma: pharmacological perspectives. Trends. Pharmacol. Sci. 15, 324–332 (1994).

    Article  CAS  Google Scholar 

  6. Kundig, T.M. et al. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 5, 41–52 (1996).

    Article  CAS  Google Scholar 

  7. Locksley, R.M., Killeen, N. & Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  Google Scholar 

  8. Salomon, B. & Bluestone, J.A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    Article  CAS  Google Scholar 

  9. Refaeli, Y., Van Parijs, L., London, C.A., Tschopp, J. & Abbas, A.K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 8, 615–623 (1998).

    Article  CAS  Google Scholar 

  10. Monney, L. et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415, 536–541 (2002).

    Article  CAS  Google Scholar 

  11. Parker, D.C. et al. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc. Natl. Acad. Sci. USA 92, 9560–9564 (1995).

    Article  CAS  Google Scholar 

  12. Sanchez-Fueyo, A., Weber, M., Domenig, C., Strom, T.B. & Zheng, X.X. Tracking the immunoregulatory mechanisms active during allograft tolerance. J. Immunol. 168, 2274–2281 (2002).

    Article  CAS  Google Scholar 

  13. Quezada, S.A. et al. Mechanisms of donor specific transfusion tolerance: pre-emptive induction of clonal T cell exhaustion via indirect presentation. Blood 1920–1926 (2003).

  14. Coyle, A.J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000).

    Article  CAS  Google Scholar 

  15. Wells, A.D., Gudmundsdottir, H. & Turka, L.A. Following the fate of individual T cells throughout activation and clonal expansion. Signals from T cell receptor and CD28 differentially regulate the induction and duration of a proliferative response. J. Clin. Invest. 100, 3173–3183 (1997).

    Article  CAS  Google Scholar 

  16. Sabatos, C.A. et al. Tim-3/Tim-3-Ligand interaction regulates TH1 responses and induction of peripheral tolerance. Nat. Immunol. advance online publication 12 October 2003; doi:10.1038/ni988.

  17. Delovitch, T.L. & Singh, B. The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7, 727–738 (1997).

    Article  CAS  Google Scholar 

  18. Christianson, S.W., Shultz, L.D. & Leiter, E.H. Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes 42, 44–55 (1993).

    Article  CAS  Google Scholar 

  19. McIntire, J.J. et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat. Immunol. 2, 1109–1116 (2001).

    Article  CAS  Google Scholar 

  20. Kuchroo, V.K., Umetsu, D.T., DeKruyff, R.H. & Freeman, G.J. The TIM gene family: emerging roles in immunity and disease. Nat. Rev. Immunol. 3, 454–462 (2003).

    Article  CAS  Google Scholar 

  21. Li, X.C. et al. IL-2 and IL-4 double knockout mice reject islet allografts: a role for novel T cell growth factors in allograft rejection. J. Immunol. 161, 890–896 (1998).

    CAS  PubMed  Google Scholar 

  22. Kishimoto, K. et al. The role of CD154-CD40 versus CD28-B7 costimulatory pathways in regulating allogeneic Th1 and Th2 responses in vivo. J. Clin. Invest. 106, 63–72 (2000).

    Article  CAS  Google Scholar 

  23. Sho, M. et al. Physiological mechanisms of regulating alloimmunity: cytokines, CTLA-4, CD25+ cells, and the alloreactive T cell clone size. J. Immunol. 169, 3744–3751 (2002).

    Article  CAS  Google Scholar 

  24. Zheng, X.X. et al. CTLA4 signals are required to optimally induce allograft tolerance with combined donor-specific transfusion and anti-CD154 monoclonal antibody treatment. J. Immunol. 162, 4983–4990 (1999).

    CAS  PubMed  Google Scholar 

  25. DeKruyff, R.H., Fang, Y. & Umetsu, D.T. IL-4 synthesis by in vivo primed keyhole limpet hemocyanin specific CD4+ T cells. I. Influence of antigen concentration and antigen presenting cell type. J. Immunol. 149, 3468–3476 (1992).

    CAS  PubMed  Google Scholar 

  26. Judge, T.A. et al. The in vivo mechanism of action of CTLA4Ig. J. Immunol. 156, 2294–2299 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Waaga, A.M. et al. Regulatory functions of self-restricted MHC class II allopeptide-specific Th2 clones in vivo. J. Clin. Invest. 107, 909–916 (2001).

    Article  CAS  Google Scholar 

  28. Lee, R.S. et al. CTLA4Ig-induced linked regulation of allogeneic T cell responses. J. Immunol. 166, 1572–1582 (2001).

    Article  CAS  Google Scholar 

  29. Maurik Av, A., Herber, M., Wood, K.J. & Jones, N.D. Cutting edge: CD4+CD25+ alloantigen-specific immunoregulatory cells that can prevent CD8+ T cell-mediated graft rejection: implications for anti-CD154 immunotherapy. J. Immunol. 169, 5401–5404 (2002).

    Article  Google Scholar 

  30. Kingsley, C.I., Karim, M., Bushell, A.R. & Wood, K.J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10- dependent immunoregulation of alloresponses. J. Immunol. 168, 1080–1086 (2002).

    Article  CAS  Google Scholar 

  31. Graca, L. et al. Both CD4+CD25+ and CD4+CD25 regulatory cells mediate dominant transplantation tolerance. J. Immunol. 168, 5558–5565 (2002).

    Article  CAS  Google Scholar 

  32. Sakaguchi, S. & Sakaguchi, N. Thymus and autoimmunity: capacity of the normal thymus to produce pathogenic self-reactive T cells and conditions required for their induction of autoimmune disease. J. Exp. Med. 172, 537–545 (1990).

    Article  CAS  Google Scholar 

  33. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  34. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  Google Scholar 

  35. Wood, K.J. & Sakaguchi, S. Regulatory lymphocytes: regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 3, 199–210 (2003).

    Article  CAS  Google Scholar 

  36. Shevach, E.M. CD4+CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389–400 (2002).

    Article  CAS  Google Scholar 

  37. Caramalho, I. et al. Regulatory T cells selectively express Toll-like receptors and are activated by lipopolysaccharide. J. Exp. Med. 197, 403–411 (2003).

    Article  CAS  Google Scholar 

  38. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  Google Scholar 

  39. Iwakoshi, N.N. et al. Treatment of allograft recipients with donor-specific transfusion and anti-CD154 antibody leads to deletion of alloreactive CD8+ T cells and prolonged graft survival in a CTLA4-dependent manner. J. Immunol. 164, 512–521 (2000).

    Article  CAS  Google Scholar 

  40. Yamazaki, S. et al. Direct expansion of functional CD25+CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247 (2003).

    Article  CAS  Google Scholar 

  41. Walker, L.S., Chodos, A., Eggena, M., Dooms, H. & Abbas, A.K. Antigen-dependent proliferation of CD4+CD25+ regulatory T cells in vivo. J. Exp. Med. 198, 249–258 (2003).

    Article  CAS  Google Scholar 

  42. Buhlmann, J.E. et al. In the absence of a CD40 signal, B cells are tolerogenic. Immunity 2, 645–653 (1995).

    Article  CAS  Google Scholar 

  43. Foy, T.M., Aruffo, A., Bajorath, J., Buhlmann, J.E. & Noelle, R.J. Immune regulation by CD40 and its ligand GP39. Annu. Rev. Immunol. 14, 591–617 (1996).

    Article  CAS  Google Scholar 

  44. Hollander, G.A. et al. Induction of alloantigen-specific tolerance by B cells from CD40-deficient mice. Proc. Natl. Acad. Sci. USA 93, 4994–4998 (1996).

    Article  CAS  Google Scholar 

  45. Martin, E., O'Sullivan, B., Low, P. & Thomas, R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 18, 155–167 (2003).

    Article  CAS  Google Scholar 

  46. Yoon, J.W. et al. Control of autoimmune diabetes in NOD mice by GAD expression or suppression in beta cells. Science 284, 1183–1187 (1999).

    Article  CAS  Google Scholar 

  47. Steiger, J., Nickerson, P.W., Steurer, W., Moscovitch-Lopatin, M. & Strom, T.B. IL-2 knockout recipient mice reject islet cell allografts. J. Immunol. 155, 489–498 (1995).

    CAS  PubMed  Google Scholar 

  48. Li, Y. et al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat. Med. 5, 1298–1302 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Chimerigen (Allston, Massachusetts) for providing purified fusion proteins, and Y. Tian for technical assistance. Supported by the Juvenile Diabetes Research Foundation (X.X.Z. and A.S.-F.), the National Institute of Allergy and Infectious Diseases (T.B.S.) and the Juvenile Diabetes Research Foundation Center for Islet Transplantation at Harvard Medical School (T.B.S.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anthony J Coyle or Terry B Strom.

Ethics declarations

Competing interests

J.T., D.P., J.-C.G.-R. and A.J.C. are employed by Millennium Pharmaceuticals, which holds the patent on Tim-3, as does V.K.K.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Fueyo, A., Tian, J., Picarella, D. et al. Tim-3 inhibits T helper type 1–mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol 4, 1093–1101 (2003). https://doi.org/10.1038/ni987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing