Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thymic stromal-derived lymphopoietin distinguishes fetal from adult B cell development

Abstract

Deletions of interleukin 7 (IL-7) or its receptor components permit fetal but not adult B cell development in mice. Mice deficient in IL-7 receptor α (IL-7Rα) had 1% the number of B cells of controls and 10% that of mice deficient in the common γ chain. As IL-7Rα is also a receptor for thymic stromal-derived lymphopoietin (TSLP), we assayed the ability of TSLP to support proliferation of fetal or adult precursor B cells. Only fetal-derived pro-B cells were able to respond to TSLP, although pre-B cells from both origins were TSLP-responsive. Fetal but not adult precursors generated a measurable B cell compartment in the absence of IL-7. The residual B cells found in IL-7Rα-deficient mice required fetal liver kinase 2 (Flk-2) for their development. Thus, IL-7Rα- and Flk-2-mediated signals account for the generation of almost all mouse B lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Splenic B cells in T, γT, 7RT, and γ7RT mice.
Figure 2: B cell development in T, γT, 7RT and γ7RT mice.
Figure 3: Fetal liver, but not bone marrow precursors, generate B cells in the absence of IL-7.
Figure 4: TSLP is selectively active on pro-B cells derived from fetal liver, but not adult bone marrow.
Figure 5: TSLP and IL-7 drive differentiation of IgM+ cells in wild-type pro-B cell cultures, but only TSLP supports the proliferation of γc fetal liver pro-B cells.
Figure 6: Pro-B lymphocytes from fetal liver and bone marrow express similar amounts of TSLPR, IL-7Rα and γc.
Figure 7: Absence of B lymphocytes in Il7ra−/−Flk2−/− mice.

Similar content being viewed by others

References

  1. Akashi, K., Kondo, M. & Weissman, I.L. Role of interleukin-7 in T-cell development from hematopoietic stem cells. Immunol. Rev. 165, 13–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Hirose, J. et al. A developing picture of lymphopoiesis in bone marrow. Immunol. Rev. 189, 28–40 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leonard, W.J., Shores, E.W. & Love, P.E. Role of the common cytokine receptor γ chain in cytokine signaling and lymphoid development. Immunol. Rev. 148, 97–114 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Vosshenrich, C.A. & Di Santo, J.P. Cytokines: IL-21 joins the γc-dependent network? Curr. Biol. 11, R175–177 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. DiSanto, J.P., Muller, W., Guy-Grand, D., Fischer, A. & Rajewsky, K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor γ chain. Proc. Natl. Acad. Sci. USA 92, 377–381 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity 2, 223–238 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Vosshenrich, C.A. et al. Common cytokine receptor γ chain (γc)-deficient B cells persist in T cell-deficient γc-mice and respond to a T-independent antigen. Eur. J. Immunol. 30, 1614–1622 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Moore, T.A., von Freeden-Jeffry, U., Murray, R. & Zlotnik, A. Inhibition of γδ T cell development and early thymocyte maturation in IL-7−/− mice. J. Immunol. 157, 2366–2373 (1996).

    CAS  PubMed  Google Scholar 

  10. Carvalho, T.L., Mota-Santos, T., Cumano, A., Demengeot, J. & Vieira, P. Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin 7−/− mice. J. Exp. Med. 194, 1141–1150 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hardy, R.R. B-cell commitment: deciding on the players. Curr. Opin. Immunol. 15, 158–165 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Zsebo, K.M. et al. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium. Cell 63, 195–201 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Waskow, C., Paul, S., Haller, C., Gassmann, M. & Rodewald, H. Viable c-KitW/W mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis. Immunity 17, 277–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Mackarehtschian, K. et al. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3, 147–161 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Levin, S.D. et al. Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J. Immunol. 162, 677–683 (1999).

    CAS  PubMed  Google Scholar 

  18. Ray, R.J., Furlonger, C., Williams, D.E. & Paige, C.J. Characterization of thymic stromal-derived lymphopoietin (TSLP) in murine B cell development in vitro. Eur. J. Immunol. 26, 10–16 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Park, L.S. et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: Formation of a functional heteromeric complex requires interleukin 7 receptor. J. Exp. Med. 192, 659–670 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Isaksen, D.E. et al. Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 163, 5971–5977 (1999).

    CAS  PubMed  Google Scholar 

  21. Pandey, A. et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat. Immunol. 1, 59–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Noguchi, M. et al. Interleukin-2 receptor γ chain: a functional component of the interleukin-7 receptor. Science 262, 1877–1880 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Agenes, F. & Freitas, A.A. Transfer of small resting B cells into immunodeficient hosts results in the selection of a self-renewing activated B cell population. J. Exp. Med. 189, 319–330 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hardy, R.R., Carmack, C.E., Shinton, S.A., Kemp, J.D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Rolink, A. et al. Two pathways of B-lymphocyte development in mouse bone marrow and the roles of surrogate L chain in this development. Immunol. Rev. 137, 185–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Osmond, D.G., Rolink, A. & Melchers, F. Murine B lymphopoiesis: towards a unified model. Immunol. Today 19, 65–68 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Douagi, I., Vieira, P. & Cumano, A. Lymphocyte commitment during embryonic development, in the mouse. Semin. Immunol. 14, 361–369 (2002).

    Article  PubMed  Google Scholar 

  29. Sims, J.E. et al. Molecular cloning and biological characterization of a novel murine lymphoid growth factor. J. Exp. Med. 192, 671–680 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gimble, J.M. et al. Characterization of murine bone marrow and spleen-derived stromal cells: analysis of leukocyte marker and growth factor mRNA transcript levels. Blood 74, 303–311 (1989).

    CAS  PubMed  Google Scholar 

  31. Cho, S.K. et al. Functional characterization of B lymphocytes generated in vitro from embryonic stem cells. Proc. Natl. Acad. Sci. USA 96, 9797–9802 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Friend, S.L. et al. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp. Hematol. 22, 321–328 (1994).

    CAS  PubMed  Google Scholar 

  33. Isaksen, D.E. et al. Uncoupling of proliferation and Stat5 activation in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 168, 3288–3294 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Lyman, S.D. et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75, 1157–1167 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Miller, J.P. et al. The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7. J. Exp. Med. 196, 705–711 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gougeon, M.L. et al. Human severe combined immunodeficiency disease: phenotypic and functional characteristics of peripheral B lymphocytes. J. Immunol. 145, 2873–2879 (1990).

    CAS  PubMed  Google Scholar 

  37. Puel, A., Ziegler, S.F., Buckley, R.H. & Leonard, W.J. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Colucci, F. et al. Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation. J. Immunol. 162, 2761–2765 (1999).

    CAS  PubMed  Google Scholar 

  40. Godin, I., Dieterlen-Lievre, F. & Cumano, A. Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. Proc. Natl. Acad. Sci. USA 92, 773–777 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank J.P. Pereira for providing cDNA to set up the Tslpr PCR; B. Hampel for reagents; L. Boucontet for assistance with TaqMan; I. Lemischka for Flk-2-deficient mice; and F. Colucci, M. Garcia-Ojeda and S. Dias for critical reading of the manuscript. This work was supported by the Institut Pasteur, the Land Nordrhein-Westfalen, grants from the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie, Förderkennzeichen 01 KS 9502 (ZMMK,Cologne) to Klaus Rajewsky and W.M., the Association pour la Recherché contre le Cancer, the Institut Nationale de la Santè et Recherche Medicale, and the Ligue Nationale Contre Le Cancer as an Associated Laboratory. C.V. was supported by fellowships from the Fondation pour la Recherche Medicale and the Institut Nationale de la Santè et Recherche Medicale (INSERM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Vieira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voßhenrich, C., Cumano, A., Müller, W. et al. Thymic stromal-derived lymphopoietin distinguishes fetal from adult B cell development. Nat Immunol 4, 773–779 (2003). https://doi.org/10.1038/ni956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing