Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å

Abstract

CD1 antigens bind a variety of self and foreign lipid and glycolipid antigens for presentation to CD1-restricted T cell receptors (TCRs). Here we report the crystal structure of human CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. The lipid adopts an S-shaped conformation, with the sphingosine chain completely buried in the A′ pocket and the fatty acid chain emerging from the interface of the A′ pocket into the more exposed F′ pocket. The headgroup is anchored in the A′-F′ junction and protrudes into the F′ pocket for TCR recognition. Because the A′ pocket is narrow with a fixed terminus, it can act as a molecular 'ruler' to select alkyl chains of a particular length.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The human CD1a structure with a bound sulfatide antigen.
Figure 2: Conformation of the sulfatide in the CD1a binding groove.
Figure 3: 'Stereo view' of the bound lipid and headgroup conformation.
Figure 4: 'Stereo view' of CD1 and MHC class I α1-α2 binding domains.
Figure 5: Comparison of the antigen-binding grooves of CD1a, CD1b and mCD1d.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Calabi, F., Jarvis, J.M., Martin, L. & Milstein, C. Two classes of CD1 genes. Eur. J. Immunol. 19, 285–292 (1989).

    Article  CAS  Google Scholar 

  2. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  3. Beckman, E.M. et al. CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. J. Immunol. 157, 2795–2803 (1996).

    CAS  Google Scholar 

  4. Porcelli, S., Morita, C.T. & Brenner, M.B. CD1b restricts the response of human CD4-8-T lymphocytes to a microbial antigen. Nature 360, 593–597 (1992).

    Article  CAS  Google Scholar 

  5. Vincent, M.S. et al. CD1-dependent dendritic cell instruction. Nat. Immunol. 3, 1163–1168 (2002).

    Article  CAS  Google Scholar 

  6. Rosat, J.P. et al. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ αβ T cell pool. J. Immunol. 162, 366–371 (1999).

    CAS  Google Scholar 

  7. Moody, D.B. et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278, 283–286 (1997).

    Article  CAS  Google Scholar 

  8. Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29, 1667–1675 (1999).

    Article  CAS  Google Scholar 

  9. Shamshiev, A. et al. Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med. 195, 1013–1021 (2002).

    Article  CAS  Google Scholar 

  10. Moody, D.B. et al. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404, 884–888 (2000).

    Article  CAS  Google Scholar 

  11. Beckman, E.M. et al. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372, 691–694 (1994).

    Article  CAS  Google Scholar 

  12. Moody, D.B. & Porcelli, S.A. Intracellular pathways of CD1 antigen presentation. Nat. Rev. Immunol. 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  13. Sugita, M. et al. Separate pathways for antigen presentation by CD1 molecules. Immunity 11, 743–752 (1999).

    CAS  Google Scholar 

  14. Moody, D.B. et al. Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat. Immunol. 3, 435–442 (2002).

    Article  CAS  Google Scholar 

  15. Jackman, R.M. et al. The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity 8, 341–351 (1998).

    CAS  Google Scholar 

  16. Chiu, Y.H. et al. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med. 189, 103–110 (1999).

    Article  CAS  Google Scholar 

  17. Sugita, M., van Der Wel, N., Rogers, R.A., Peters, P.J. & Brenner, M.B. CD1c molecules broadly survey the endocytic system. Proc. Natl. Acad. Sci. USA 97, 8445–8450 (2000).

    Article  CAS  Google Scholar 

  18. Sugita, M. et al. Failure of trafficking and antigen presentation by CD1 in AP-3- deficient cells. Immunity 16, 697–706 (2002).

    Article  CAS  Google Scholar 

  19. Porcelli, S. et al. Recognition of cluster of differentiation 1 antigens by human CD4-CD8-cytolytic T lymphocytes. Nature 341, 447–450 (1989).

    Article  CAS  Google Scholar 

  20. Zeng, Z. et al. Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277, 339–345 (1997).

    Article  CAS  Google Scholar 

  21. Gadola, S.D. et al. Structure of human CD1b with bound ligands at 2.3 Å, a maze for alkyl chains. Nat. Immunol. 3, 721–726 (2002).

    Article  CAS  Google Scholar 

  22. Jackson, M.R., Song, E.S., Yang, Y. & Peterson, P.A. Empty and peptide-containing conformers of class I major histocompatibility complex molecules expressed in Drosophila melanogaster cells. Proc. Natl. Acad. Sci. USA 89, 12117–12121 (1992).

    Article  CAS  Google Scholar 

  23. Matsumura, M., Saito, Y., Jackson, M.R., Song, E.S. & Peterson, P.A. In vitro peptide binding to soluble empty class I major histocompatibility complex molecules isolated from transfected Drosophila melanogaster cells. J. Biol. Chem. 267, 23589–23595 (1992).

    CAS  PubMed  Google Scholar 

  24. Matsumura, M., Fremont, D.H., Peterson, P.A. & Wilson, I.A. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257, 927–934 (1992).

    Article  CAS  Google Scholar 

  25. Madden, D.R. The three-dimensional structure of peptide-MHC complexes. Annu. Rev. Immunol. 13, 587–622.(1995).

    Article  CAS  Google Scholar 

  26. O×Brien, J.S., Fillerup, D.L. & Mead, J.F. Quantification and fatty acid and fatty aldehyde composition of ethanolamine, choline, and serine glycerophosphatides in human cerebral grey and white matter. J. Lipid. Res. 5, 329–338 (1964).

    Google Scholar 

  27. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  28. O'Callaghan, C.A. et al. Structural features impose tight peptide binding specificity in the nonclassical MHC molecule HLA-E. Mol. Cell. 1, 531–541 (1998).

    Article  CAS  Google Scholar 

  29. Khan, A.R., Baker, B.M., Ghosh, P., Biddison, W.E. & Wiley, D.C. The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J. Immunol. 164, 6398–6405 (2000).

    Article  CAS  Google Scholar 

  30. Speir, J.A., Abdel-Motal, U.M., Jondal, M. & Wilson, I.A. Crystal structure of an MHC class I presented glycopeptide that generates carbohydrate-specific CTL. Immunity 10, 51–61 (1999).

    Article  CAS  Google Scholar 

  31. Lerche, M.H., Kragelund, B.B., Bech, L.M. & Poulsen, F.M. Barley lipid-transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure 5, 291–306 (1997).

    Article  CAS  Google Scholar 

  32. Young, A.C. et al. Structural studies on human muscle fatty acid binding protein at 1.4 Å resolution: binding interactions with three C18 fatty acids. Structure 2, 523–534 (1994).

    Article  CAS  Google Scholar 

  33. Manolova, V., Hirabayashi, Y., Mori, L. & Libero, G.D. CD1a and CD1b surface expression is independent from de novo synthesized glycosphingolipids. Eur. J. Immunol. 33, 29–37 (2003).

    Article  CAS  Google Scholar 

  34. Sidobre, S. & Kronenberg, M. CD1 tetramers: a powerful tool for the analysis of glycolipid-reactive T cells. J. Immunol. Methods 268, 107–121 (2002).

    Article  CAS  Google Scholar 

  35. Otwinowski, Z. & Minor, W. HKL: Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  36. Vagin, A.A. & Teplyakov, A. MOLREP:an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  37. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D54, 905–921 (1998).

    Google Scholar 

  38. Pannu, N.S. & Read, R.J. Improved structure refinement through maximum likelyhood. Acta Crystallogr. A52, 659–668 (1996).

    Article  CAS  Google Scholar 

  39. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  Google Scholar 

  40. Jones, T.A., Cowan, S., Zou, J.Y. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  41. Kleywegt, G.J. & Jones, T.A. Databases in protein crystallography. Acta Crystallogr. D54, 1119–1131 (1998).

    CAS  Google Scholar 

  42. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum likelihood method. Acta Crystallogr. D53, 240–255 (1997).

    CAS  Google Scholar 

  43. CCP4. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763 (1994).

  44. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D57, 122–133 (2001).

    CAS  Google Scholar 

  45. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  46. Connolly, M.L. The molecular surface package. J. Mol. Graph. 11, 139–141 (1993).

    Article  CAS  Google Scholar 

  47. Gelin, B.R. & Karplus, M. Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment. Biochemistry 18, 1256–1268 (1979).

    Article  CAS  Google Scholar 

  48. Sheriff, S., Hendrickson, W.A. & Smith, J.L. Structure of myohemerythrin in the azidomet state at 1.7/1.3 Å resolution. J. Mol. Biol. 197, 273–296 (1987).

    Article  CAS  Google Scholar 

  49. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of proteins. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  50. Merritt, E.A. & Bacon, D.J. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  51. Esnouf, R.M. An extensively modified version of Molscript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  52. Howlin, B., Butler, D.S., Moss, D.S., Harris, G.W. & Driessen, H.P.C. TLSANL: TLS parameter analysis program for segmented anisotropic refinement of macromolecular structures. J. Appl. Crystallogr. 26, 622–624 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Advanced Light Source BL 5.0.1 for support with data collection; M. Crispin, R. Stanfield, A. Heine, J. Stevens, J. Luz, N. Larsen, J. Kelly and B. Moody for discussions; X. Dai for assistance on synchrotron trips; S. Ferguson for technical assistance; R. Stefanko and M. Wallace for generating the CD1a construct; and E. Grant and M. Brenner for the CD1a cDNA. We acknowledge Syrrx for the use of their crystallization robot (initial CD1a crystallization trials). This study was supported by National Institutes of Health grants GM62116 (I.A.W.), CA58896 (I.A.W.) and AI53725 (L.T.), postdoctoral fellowships from the Deutsche Forschungsgemeinschaft and the Skaggs Institute for Chemical Biology (D.M.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A Wilson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zajonc, D., Elsliger, M., Teyton, L. et al. Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 Å. Nat Immunol 4, 808–815 (2003). https://doi.org/10.1038/ni948

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni948

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing