Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Drosophila immune system detects bacteria through specific peptidoglycan recognition

Abstract

The Drosophila immune system discriminates between different classes of infectious microbes and responds with pathogen-specific defense reactions through selective activation of the Toll and the immune deficiency (Imd) signaling pathways. The Toll pathway mediates most defenses against Gram-positive bacteria and fungi, whereas the Imd pathway is required to resist infection by Gram-negative bacteria. The bacterial components recognized by these pathways remain to be defined. Here we report that Gram-negative diaminopimelic acid–type peptidoglycan is the most potent inducer of the Imd pathway and that the Toll pathway is predominantly activated by Gram-positive lysine-type peptidoglycan. Thus, the ability of Drosophila to discriminate between Gram-positive and Gram-negative bacteria relies on the recognition of specific forms of peptidoglycan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gram-negative peptidoglycan (PG) activates the Imd pathway.
Figure 2: Gram-negative peptidoglycan (PG) induces Dpt expression via the Imd pathway.
Figure 3: Muramidase-treated peptidoglycan (PG) does not activate antimicrobial peptide genes.
Figure 4: Gram-negative peptidoglycan (PG) is the most potent activator of Dpt in cultured cells.
Figure 5: Gram-positive and Gram-negative peptidoglycans (PGs) activate the Toll pathway.
Figure 6: Gram-positive and Gram-negative peptidoglycans (PGs) induce Drs expression via the Toll pathway.

Similar content being viewed by others

References

  1. Medzhitov, R. & Janeway, C.A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Tzou, P., De Gregorio, E. & Lemaitre, B. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol. 5, 102–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Hultmark, D. Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12–19 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Khush, R.S., Leulier, F. & Lemaitre, B. Drosophila immunity: two paths to NF-κB. Trends Immunol. 22, 260–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. De Gregorio, E., Spellman, P.T., Tzou, P., Rubin, G.M. & Lemaitre, B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21, 2568–2579 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune response in Drosophila. Dev. Cell 3, 711–722 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Lemaitre, B., Reichhart, J. & Hoffmann, J. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA 94, 14614–14619 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Leulier, F., Rodriguez, A., Khush, R.S., Abrams, J.M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep. 1, 353–358 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nat. Immunol. 1, 342–347 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB–dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4, 827–837 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Yoshida, H., Kinoshita, K. & Ashida, M. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J. Biol. Chem. 271, 13854–13860. (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Kang, D., Liu, G., Lundstrom, A., Gelius, E. & Steiner, H. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc. Natl. Acad. Sci. USA 95, 10078–10082 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Werner, T. et al. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97, 13772–13777 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Michel, T., Reichhart, J.M., Hoffmann, J.A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414, 756–759 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Choe, K.M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K.V. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296, 359–362 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Gottar, M. et al. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416, 640–644 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Takehana, A. et al. Overexpression of a pattern-recognition receptor, peptidoglycan- recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl. Acad. Sci. USA 99, 13705–13710 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Samakovlis, C., Asling, B., Boman, H., Gateff, E. & Hultmark, D. In vitro induction of cecropin genes: an immune response in a Drosophila blood cell line. Biochem. Biophys. Res. Commun. 188, 1169–1175 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Imler, J.L., Tauszig, S., Jouanguy, E., Forestier, C. & Hoffmann, J.A. LPS-induced immune response in Drosophila. J. Endotoxin Res. 6, 459–462 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Hirschfeld, M., Ma, Y., Weis, J.H., Vogel, S.N. & Weis, J.J. Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J. Immunol. 165, 618–622 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Glauner, B., Holtje, J.V. & Schwarz, U. The composition of the murein of Escherichia coli. J. Biol. Chem. 263, 10088–10095 (1988).

    CAS  PubMed  Google Scholar 

  27. Mengin-Lecreulx, D. & van Heijenoort, J. Effect of growth conditions on peptidoglycan content and cytoplasmic steps of its biosynthesis in Escherichia. J. Bacteriol. 163, 208–212 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. & Hoffmann, J. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Ashida, M., Ishizaki, Y. & Iwahana, H. Activation of pro-phenoloxidase by bacterial cell walls or β-1,3-glucans in plasma of the silkworm, Bombyx mori. Biochem. Biophys. Res. Commun 113, 562–568 (1983).

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida, H. & Ashida, M. Microbial activation of two serine enzymes and prophenoloxidase in the plasma fraction of hemolymph of the silkworm, Bombyx mori. Insect Biochem. 16, 539–545 (1986).

    Article  CAS  Google Scholar 

  33. Schleifer, K.H. & Kandler, O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol. Rev. 36, 407–477 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, J.T. Why does Escherichia coli recycle its cell wall peptides? Mol. Microbiol. 17, 421–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Pye, A. Microbial activation of prophenoloxidase from immune insect larvae. Nature 251, 610–613 (1974).

    Article  CAS  PubMed  Google Scholar 

  36. Iketani, M., Nishimura, H., Akayama, K., Yamano, Y. & Morishima, I. Minimum structure of peptidoglycan required for induction of antibacterial protein synthesis in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 29, 19–24 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Tzou, P., Meister, M. & Lemaitre, B. Methods for studying infection and immunity in Drosophila. Methods Microbiol. 31, 507–529 (2002).

    Article  CAS  Google Scholar 

  39. Aussel, L., Brisson, J.R., Perry, M.B. & Caroff, M. Structure of the lipid A of Bordetella hinzii ATCC 51730. Rapid Commun. Mass Spectrom. 14, 595–599 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Karibian, D., Deprun, C. & Caroff, M. A comparison of the Lipid A of several Salmonella and Escherichia strains by 252Cf plasma desorption mass spectrometry. J. Bacteriol. 2988–2993 (1993).

  41. Shands, J.W. Jr. & Chun, P.W. The dispersion of Gram-negative lipopolysaccharide by deoxycholate. Subunit molecular weight. J. Biol. Chem. 255, 1221–1226 (1980).

    CAS  PubMed  Google Scholar 

  42. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. De Gregorio and F. Boccard for reading the manuscript; N. Vodovar for technical help; R. Chaby, D. Philpott and S. Girardin for discussions, and J. Royet, D. Ferrandon and K.V. Anderson for fly stocks. This work was supported by the Centre National de la Recherche Scientifique and grants from Association pour la Recherche sur la Cancer, Programme de Recherche Fondamentale en Microbiologie et Maladies Infectieuses et Parasitaires and the Agence Nationale de Recherche sur le Sida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Lemaitre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leulier, F., Parquet, C., Pili-Floury, S. et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4, 478–484 (2003). https://doi.org/10.1038/ni922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni922

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing