Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aire regulates negative selection of organ-specific T cells

Abstract

Autoimmune polyendocrinopathy syndrome type 1 is a recessive Mendelian disorder resulting from mutations in a novel gene, AIRE, and is characterized by a spectrum of organ-specific autoimmune diseases. It is not known what tolerance mechanisms are defective as a result of AIRE mutation. By tracing the fate of autoreactive CD4+ T cells with high affinity for a pancreatic antigen in transgenic mice with an Aire mutation, we show here that Aire deficiency causes almost complete failure to delete the organ-specific cells in the thymus. These results indicate that autoimmune polyendocrinopathy syndrome 1 is caused by failure of a specialized mechanism for deleting forbidden T cell clones, establishing a central role for this tolerance mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Failure to delete pancreatic islet reactive T cells in thymus of Aire−/− mice.
Figure 2: Failure of thymic deletion in Aire−/− mice.
Figure 3: Islet-specific T cells in the peripheral repertoire of Aire−/− mice.

Similar content being viewed by others

References

  1. Ohashi, P.S. et al. Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65, 305–317 (1991).

    Article  CAS  Google Scholar 

  2. Katz, J.D., Wang, B., Haskins, K., Benoist, C. & Mathis, D. Following a diabetogenic T cell from genesis through pathogenesis. Cell 74, 1089–1100 (1993).

    Article  CAS  Google Scholar 

  3. Goverman, J. Tolerance and autoimmunity in TCR transgenic mice specific for myelin basic protein. Immunol. Rev. 169, 147–159 (1999).

    Article  CAS  Google Scholar 

  4. Scott, B. et al. A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1, 73–83 (1994).

    Article  CAS  Google Scholar 

  5. Lafaille, J.J., Nagashima, K., Katsuki, M. & Tonegawa, S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78, 399–408 (1994).

    Article  CAS  Google Scholar 

  6. Waldner, H., Whitters, M.J., Sobel, R.A., Collins, M. & Kuchroo, V.K. Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc. Natl. Acad. Sci. USA 97, 3412–3417 (2000).

    Article  CAS  Google Scholar 

  7. Hernandez, J., Aung, S., Redmond, W.L. & Sherman, L.A. Phenotypic and functional analysis of CD8(+) T cells undergoing peripheral deletion in response to cross-presentation of self-antigen. J. Exp. Med. 194, 707–717 (2001).

    Article  CAS  Google Scholar 

  8. Lambolez, F., Jooss, K., Vasseur, F. & Sarukhan, A. Tolerance induction to self antigens by peripheral dendritic cells. Eur. J. Immunol. 32, 2588–2597 (2002).

    Article  CAS  Google Scholar 

  9. Greenwald, R.J., Boussiotis, V.A., Lorsbach, R.B., Abbas, A.K. & Sharpe, A.H. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    Article  CAS  Google Scholar 

  10. Shevach, E. CD4+CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389–400 (2002).

    Article  CAS  Google Scholar 

  11. Le Douarin, N. et al. Evidence for a thymus-dependent form of tolerance that is not based on elimination or anergy of reactive T cells. Immunol. Rev. 149, 35–53 (1996).

    Article  CAS  Google Scholar 

  12. Hammerling, G.J. et al. Non-deletional mechanisms of peripheral and central tolerance: studies with transgenic mice with tissue-specific expression of a foreign MHC class I antigen. Immunol. Rev. 122, 47–67 (1991).

    Article  CAS  Google Scholar 

  13. Hoffmann, M.W., Heath, W.R., Ruschmeyer, D. & Miller, J.F. Deletion of high-avidity T cells by thymic epithelium. Proc. Natl. Acad. Sci. USA 92, 9851–9855 (1995).

    Article  CAS  Google Scholar 

  14. Akkaraju, S. et al. A range of CD4 T cell tolerance: partial inactivation to organ-specific antigen allows nondestructive thyroiditis or insulitis. Immunity 7, 255–271 (1997).

    Article  CAS  Google Scholar 

  15. Klein, L., Klein, T., Ruther, U. & Kyewski, B. CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J. Exp. Med. 188, 5–16 (1998).

    Article  CAS  Google Scholar 

  16. Jolicoeur, C., Hanahan, D. & Smith, K.M. T-cell tolerance toward a transgenic β-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc. Natl. Acad. Sci. USA 91, 6707–6711 (1994).

    Article  CAS  Google Scholar 

  17. Kyewski, B., Derbinski, J., Gotter, J. & Klein, L. Promiscuous gene expression and central T-cell tolerance: more than meets the eye. Trends Immunol. 23, 364–371 (2002).

    Article  CAS  Google Scholar 

  18. Betterle, C., Greggio, N.A. & Volpato, M. Clinical review 93: autoimmune polyglandular syndrome type 1. J. Clin. Endocrinol. Metab. 83, 1049–1055 (1998).

    Article  CAS  Google Scholar 

  19. Nagamine, K. et al. Positional cloning of the APECED gene. Nat. Genet. 17, 393–398 (1997).

    Article  CAS  Google Scholar 

  20. The Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17, 399–403 (1997).

  21. Pitkanen, J. et al. The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein. J. Biol. Chem. 275, 16802–16809 (2000).

    Article  CAS  Google Scholar 

  22. Bjorses, P. et al. Mutations in the AIRE gene: effects on subcellular location and transactivation function of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy protein. Am. J. Hum. Genet. 66, 378–392 (2000).

    Article  CAS  Google Scholar 

  23. Ramsey, C. et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11, 397–409 (2002).

    Article  CAS  Google Scholar 

  24. Heino, M. et al. Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem. Biophys. Res. Commun. 257, 821–825 (1999).

    Article  CAS  Google Scholar 

  25. Bjorses, P. et al. Localization of the APECED protein in distinct nuclear structures. Hum. Mol. Genet. 8, 259–266 (1999).

    Article  CAS  Google Scholar 

  26. Anderson, M.S. et al. Projection of an immunological self-shadow within the thymus by the Aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  27. Lesage, S. et al. Failure to censor forbidden clone of CD4 T cells in autoimmune diabetes. J. Exp. Med. 196, 1175–1188 (2002).

    Article  CAS  Google Scholar 

  28. Ho, W.Y., Cooke, M.P., Goodnow, C.C. & Davis, M.M. Resting and anergic B cells are defective in CD28-dependent costimulation of naive CD4+ T cells. J. Exp. Med. 179, 1539–1549 (1994).

    Article  CAS  Google Scholar 

  29. Adelstein, S. et al. Induction of self-tolerance in T cells but not B cells of transgenic mice expressing little self antigen. Science 251, 1223–1225 (1991).

    Article  CAS  Google Scholar 

  30. Akkaraju, S., Canaan, K. & Goodnow, C.C. Self-reactive B cells are not eliminated or inactivated by autoantigen expressed on thyroid epithelial cells. J. Exp. Med. 186, 2005–2012 (1997).

    Article  CAS  Google Scholar 

  31. Van Parijs, L., Peterson, D.A. & Abbas, A.K. The Fas/Fas ligand pathway and Bcl-2 regulate T cell responses to model self and foreign antigens. Immunity 8, 265–274 (1998).

    Article  CAS  Google Scholar 

  32. Ueno, T. et al. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16, 205–218 (2002).

    Article  CAS  Google Scholar 

  33. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  34. Mason, D. Some quantitative aspects of T-cell repertoire selection: the requirement for regulatory T cells. Immunol. Rev. 182, 80–88 (2001).

    Article  CAS  Google Scholar 

  35. Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000).

    Article  CAS  Google Scholar 

  36. Heino, M. et al. RNA and protein expression of the murine autoimmune regulator gene (Aire) in normal, RelB-deficient and in NOD mouse. Eur. J. Immunol. 30, 1884–1893 (2000).

    Article  CAS  Google Scholar 

  37. Stockinger, B. T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms. Adv. Immunol. 71, 229–265 (1999).

    Article  CAS  Google Scholar 

  38. Hanahan, D. Peripheral-antigen-expressing cells in thymic medulla: factors in self-tolerance and autoimmunity. Curr. Opin. Immunol. 10, 656–662 (1998).

    Article  CAS  Google Scholar 

  39. Schwartz, R.H. T cell anergy. Annu. Rev. Immunol. 21, 305–334 (2003).

    Article  CAS  Google Scholar 

  40. Jooss, K., Gjata, B., Danos, O., von Boehmer, H. & Sarukhan, A. Regulatory function of in vivo anergized CD4(+) T cells. Proc. Natl. Acad. Sci. USA 98, 8738–8743 (2001).

    Article  CAS  Google Scholar 

  41. Vendetti, S. et al. Anergic T cells inhibit the antigen-presenting function of dendritic cells. J. Immunol. 165, 1175–1181 (2000).

    Article  CAS  Google Scholar 

  42. Taams, L.S. et al. Anergic T cells actively suppress T cell responses via the antigen-presenting cell. Eur. J. Immunol. 28, 2902–2912 (1998).

    Article  CAS  Google Scholar 

  43. Lombardi, G., Sidhu, S., Batchelor, R. & Lechler, R. Anergic T cells as suppressor cells in vitro. Science 264, 1587–1589 (1994).

    Article  CAS  Google Scholar 

  44. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  Google Scholar 

  45. Vafiadis, P. et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat. Genet. 15, 289–292 (1997).

    Article  CAS  Google Scholar 

  46. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15, 293–297 (1997).

    Article  CAS  Google Scholar 

  47. Kishimoto, H. & Sprent, J. A defect in central tolerance in NOD mice. Nat. Immunol. 2, 1025–1031 (2001).

    Article  CAS  Google Scholar 

  48. Klein, L., Klugmann, M., Nave, K.A., Tuohy, V.K. & Kyewski, B. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat. Med. 6, 56–61 (2000).

    Article  CAS  Google Scholar 

  49. Anderson, A.C. et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med. 191, 761–770 (2000).

    Article  CAS  Google Scholar 

  50. Reif, K. et al. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416, 94–99 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Gray and R. Boyd for thymic HEL measurement; J. Cyster, E. Unanue and D. Peterson for staining reagents; the staff of Medical Genome Centre for curating the mouse colony; and A. Murtagh, S. Ewing and S. Ward for genotyping. This work was supported by a grant from the Juvenile Diabetes Research Foundation and NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher C. Goodnow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liston, A., Lesage, S., Wilson, J. et al. Aire regulates negative selection of organ-specific T cells. Nat Immunol 4, 350–354 (2003). https://doi.org/10.1038/ni906

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni906

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing