Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling

Abstract

The transmembrane phosphatase CD45 regulates both Lck activity and T cell receptor (TCR) signaling. Here we have tested whether the large ectodomain of CD45 has a role in this regulation. A CD45 chimera containing the large ectodomain of CD43 efficiently rescues TCR signaling in CD45-null T cells, whereas CD45 chimeras containing small ectodomains from other phosphatases do not. Both basal Lck activity in unstimulated cells and the TCR-induced increase in tyrosine phosphorylation of the TCR ζ-chain and in Lck activity depend on the expression of CD45 with a large ectodomain. Unlike CD45 chimeras containing small ectodomains, both the CD45 chimera with a large ectodomain and wild-type CD45 itself are partially localized to glycosphingolipid-enriched membranes (GEMs). Taken together, these data show that the large CD45 ectodomain is required for optimal TCR signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of the CD45 chimeras.
Figure 2: Reconstitution of TCR-induced NFAT activity by CD45WT.
Figure 3: Inefficient reconstitution of TCR-induced signaling by Thy-1–CD45 and CD2-CD45.
Figure 4: CD43 and CD45RO ectodomains reconstitute TCR-induced activation.
Figure 5: TCR-induced NFAT activation in stable transfectants expressing CD43-CD45, Thy-1–CD45 and CD2-CD45 chimeras.
Figure 6: Inefficient TCRζ phosphorylation and pTyr394–Lck formation in cells stably reconstituted with Thy-1–CD45 and CD2-CD45.
Figure 7: Thy-1–CD45 with a Glu613Arg mutation does not reconstitute TCR-induced NFAT activation.
Figure 8: Differential distribution of CD45 chimeras in GEM domains.

Similar content being viewed by others

References

  1. Hermiston, M.L., Xu, Z., Majeti, R. & Weiss, A. Reciprocal regulation of lymphocyte activation by tyrosine kinases and phosphatases. J. Clin. Invest. 109, 9–14 (2002).

    Article  CAS  Google Scholar 

  2. Kabouridis, P.S., Magee, A.I. & Ley, S.C. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J. 16, 4983–4998 (1997).

    Article  CAS  Google Scholar 

  3. Ostergaard, H.L. et al. Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc. Natl. Acad. Sci. USA 86, 8959–8963 (1989).

    Article  CAS  Google Scholar 

  4. Bergman, M. et al. The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity. EMBO J. 11, 2919–2924 (1992).

    Article  CAS  Google Scholar 

  5. Thomas, M.L. & Brown, E.J. Positive and negative regulation of Src-family membrane kinases by CD45. Immunol. Today 20, 406–411 (1999).

    Article  CAS  Google Scholar 

  6. Sicheri, F. & Kuriyan, J. Structures of Src-family tyrosine kinases. Curr. Opin. Struct. Biol. 7, 777–785 (1997).

    Article  CAS  Google Scholar 

  7. Yamaguchi, H. & Hendrickson, W.A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384, 484–489 (1996).

    Article  CAS  Google Scholar 

  8. Brdicka, T. et al. Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation. J. Exp. Med. 191, 1591–1604 (2000).

    Article  CAS  Google Scholar 

  9. Kawabuchi, M. et al. Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases. Nature 404, 999–1003 (2000).

    Article  CAS  Google Scholar 

  10. Torgersen, K.M. et al. Release from tonic inhibition of T cell activation through transient displacement of C-terminal Src kinase (Csk) from lipid rafts. J. Biol. Chem. 276, 29313–29318 (2001).

    Article  CAS  Google Scholar 

  11. Rodgers, W. & Rose, J.K. Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains. J. Cell Biol. 135, 1515–1523 (1996).

    Article  CAS  Google Scholar 

  12. Parolini, I., Sargiacomo, M., Lisanti, M.P. & Peschle, C. Signal transduction and glycophosphatidylinositol-linked proteins (lyn, lck, CD4, CD45, G proteins, and CD55) selectively localize in Triton-insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. Blood 87, 3783–3794 (1996).

    CAS  Google Scholar 

  13. Balamuth, F., Leitenberg, D., Unternaehrer, J., Mellman, I. & Bottomly, K. Distinct patterns of membrane microdomain partitioning in Th1 and Th2 cells. Immunity 15, 729–738 (2001).

    Article  CAS  Google Scholar 

  14. Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    Article  CAS  Google Scholar 

  15. D'Oro, U. & Ashwell, J.D. Cutting edge: the CD45 tyrosine phosphatase is an inhibitor of Lck activity in thymocytes. J. Immunol. 162, 1879–1883 (1999).

    CAS  Google Scholar 

  16. Furukawa, T., Itoh, M., Krueger, N.X., Streuli, M. & Saito, H. Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3ζ chain. Proc. Natl. Acad. Sci. USA 91, 10928–10932 (1994).

    Article  CAS  Google Scholar 

  17. Davis, S.J. & van der Merwe, P.A. The structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today 17, 177–187 (1996).

    Article  CAS  Google Scholar 

  18. Pingel, J.T. & Thomas, M.L. Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 58, 1055–1065 (1989).

    Article  CAS  Google Scholar 

  19. Koretzky, G.A., Picus, J., Thomas, M.L. & Weiss, A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 346, 66–68 (1990).

    Article  CAS  Google Scholar 

  20. Stone, J.D. et al. Aberrant TCR-mediated signaling in CD45-null thymocytes involves dysfunctional regulation of Lck, Fyn, TCR-ζ, and ZAP-70. J. Immunol. 158, 5773–5782 (1997).

    CAS  Google Scholar 

  21. Trowbridge, I.S. & Thomas, M.L. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85–116 (1994).

    Article  CAS  Google Scholar 

  22. Sgroi, D., Varki, A., Braesch-Andersen, S. & Stamenkovic, I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J. Biol. Chem. 268, 7011–7018 (1993).

    CAS  Google Scholar 

  23. Symons, A., Cooper, D.N. & Barclay, A.N. Characterization of the interaction between galectin-1 and lymphocyte glycoproteins CD45 and Thy-1. Glycobiology 10, 559–563 (2000).

    Article  CAS  Google Scholar 

  24. Leitenberg, D., Boutin, Y., Lu, D.D. & Bottomly, K. Biochemical association of CD45 with the T cell receptor complex: regulation by CD45 isoform and during T cell activation. Immunity 10, 701–711 (1999).

    Article  CAS  Google Scholar 

  25. Dornan, S. et al. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J. Biol. Chem. 277, 1912–1918 (2002).

    Article  CAS  Google Scholar 

  26. Desai, D.M., Sap, J., Schlessinger, J. & Weiss, A. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 73, 541–554 (1993).

    Article  CAS  Google Scholar 

  27. Majeti, R., Bilwes, A.M., Noel, J.P., Hunter, T. & Weiss, A. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279, 88–91 (1998).

    Article  CAS  Google Scholar 

  28. Takeda, A., Wu, J.J. & Maizel, A.L. Evidence for monomeric and dimeric forms of CD45 associated with a 30-kDa phosphorylated protein. J. Biol. Chem. 267, 16651–16659 (1992).

    CAS  Google Scholar 

  29. Xu, Z. & Weiss, A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nature Immunol. 3, 764–771 (2002).

    Article  CAS  Google Scholar 

  30. Hovis, R.R. et al. Rescue of signaling by a chimeric protein containing the cytoplasmic domain of CD45. Science 260, 544–546 (1993).

    Article  CAS  Google Scholar 

  31. Volarevic, S. et al. Regulation of TCR signaling by CD45 lacking transmembrane and extracellular domains. Science 260, 541–544 (1993).

    Article  CAS  Google Scholar 

  32. Koretzky, G.A., Picus, J., Schultz, T. & Weiss, A. Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc. Natl. Acad. Sci. USA 88, 2037–2041 (1991).

    Article  CAS  Google Scholar 

  33. Cyster, J.G., Shotton, D.M. & Williams, A.F. The dimensions of the T lymphocyte glycoprotein leukosialin and identification of linear protein epitopes that can be modified by glycosylation. EMBO J. 10, 893–902 (1991).

    Article  CAS  Google Scholar 

  34. Furukawa, K. et al. Structural study of the O-linked sugar chains of human leukocyte tyrosine phosphatase CD45. Eur. J. Biochem. 251, 288–294 (1998).

    Article  CAS  Google Scholar 

  35. Thomas, M.L. The leukocyte common antigen family. Annu. Rev. Immunol. 7, 339–369 (1989).

    Article  CAS  Google Scholar 

  36. Mustelin, T., Coggeshall, K.M. & Altman, A. Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc. Natl. Acad. Sci. USA 86, 6302–6306 (1989).

    Article  CAS  Google Scholar 

  37. Harder, T. Raft membrane domains and immunoreceptor functions. Adv. Immunol. 77, 45–92 (2001).

    Article  CAS  Google Scholar 

  38. He, X., Woodford-Thomas, T.A., Johnson, K.G., Shah, D.D. & Thomas, M.L. Targeting of CD45 protein tyrosine phosphatase activity to lipid microdomains on the T cell surface inhibits TCR signaling. Eur. J. Immunol. 32, 2578–2587 (2002).

    Article  CAS  Google Scholar 

  39. Zhang, W., Trible, R.P. & Samelson, L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    Article  CAS  Google Scholar 

  40. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998).

    Article  CAS  Google Scholar 

  41. Yamabhai, M. & Anderson, R.G. Second cysteine-rich region of epidermal growth factor receptor contains targeting information for caveolae/rafts. J. Biol. Chem. 277, 24843–24846 (2002).

    Article  CAS  Google Scholar 

  42. Carpenter, G. The EGF receptor: a nexus for trafficking and signaling. BioEssays 22, 697–707 (2000).

    Article  CAS  Google Scholar 

  43. Waugh, M.G., Lawson, D. & Hsuan, J.J. Epidermal growth factor receptor activation is localized within low-buoyant density, non-caveolar membrane domains. Biochem. J. 337, 591–597 (1999).

    Article  CAS  Google Scholar 

  44. McCabe, J.B. & Berthiaume, L.G. N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts/caveolae. Mol. Biol. Cell 12, 3601–3617 (2001).

    Article  CAS  Google Scholar 

  45. Ilangumaran, S., Arni, S., van Echten-Deckert, G., Borisch, B. & Hoessli, D.C. Microdomain-dependent regulation of Lck and Fyn protein-tyrosine kinases in T lymphocyte plasma membranes. Mol. Biol. Cell 10, 891–905 (1999).

    Article  CAS  Google Scholar 

  46. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. & Jacobson, K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284 (2002).

    Article  CAS  Google Scholar 

  47. Edmonds, S. & Ostergaard, H.L. Dynamic association of CD45with detergent-insoluble microdomains in T lymphocytes. J. Immunol. 169, 5036–5042 (2002).

    Article  Google Scholar 

  48. Millan, J., Montoya, M.C., Sancho, D., Sanchez-Madrid, F. & Alonso, M.A. Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 99, 978–984 (2002).

    Article  CAS  Google Scholar 

  49. Yeaman, C. et al. The O-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J. Cell Biol. 139, 929–940 (1997).

    Article  CAS  Google Scholar 

  50. Alfalah, M. et al. O-linked glycans mediate apical sorting of human intestinal sucrase-isomaltase through association with lipid rafts. Curr. Biol. 9, 593–596 (1999).

    Article  CAS  Google Scholar 

  51. Danielian, S. et al. Both T cell receptor (TcR)-CD3 complex and CD2 increase the tyrosine kinase activity of p56lck. CD2 can mediate TcR-CD3-independent and CD45- dependent activation of p56lck. Eur. J. Immunol. 22, 2915–2921 (1992).

    Article  CAS  Google Scholar 

  52. Tuosto, L. & Acuto, O. CD28 affects the earliest signaling events generated by TCR engagement. Eur. J. Immunol. 28, 2131–2142 (1998).

    Article  CAS  Google Scholar 

  53. Barclay, N.A. et al. in The Leucocyte Antigen: Facts Book 613 (Academic, London, 1997).

    Google Scholar 

  54. Holdorf, A.D., Lee, K.H., Burack, W.R., Allen, P.M. & Shaw, A.S. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nature Immunol. 3, 259–264 (2002).

    Article  CAS  Google Scholar 

  55. Tiveron, M.C. et al. The mode of anchorage to the cell surface determines both the function and the membrane location of Thy-1 glycoprotein. J. Cell Sci. 107, 1783–1796 (1994).

    CAS  Google Scholar 

  56. Streuli, M., Krueger, N.X., Tsai, A.Y. & Saito, H. A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila. Proc. Natl. Acad. Sci. USA 86, 8698–8702 (1989).

    Article  CAS  Google Scholar 

  57. Majeti, R. et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103, 1059–1070 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Schraven, A. Shaw, D. Alexander and B. Alarcon for reagents and cell lines; and G. Langsley, S. Pellegrini and H.-T. He for suggestions. This work was supported by grants from the Pasteur Institute, the Medical Research Council, the Association pour la Recherche sur le Cancer and the Conseil National de la Recherche Scientifique. C. I. was a recipient of a fellowship from the Consejo Nacional para la Ciencia y Tecnología, from Mexico.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Anton van der Merwe or Oreste Acuto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irles, C., Symons, A., Michel, F. et al. CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat Immunol 4, 189–197 (2003). https://doi.org/10.1038/ni877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni877

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing