Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-28, IL-29 and their class II cytokine receptor IL-28R

Abstract

Cytokines play a critical role in modulating the innate and adaptive immune systems. Here, we have identified from the human genomic sequence a family of three cytokines, designated interleukin 28A (IL-28A), IL-28B and IL-29, that are distantly related to type I interferons (IFNs) and the IL-10 family. We found that like type I IFNs, IL-28 and IL-29 were induced by viral infection and showed antiviral activity. However, IL-28 and IL-29 interacted with a heterodimeric class II cytokine receptor that consisted of IL-10 receptor β (IL-10Rβ) and an orphan class II receptor chain, designated IL-28Rα. This newly described cytokine family may serve as an alternative to type I IFNs in providing immunity to viral infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of IL-28 and IL-29.
Figure 2: RNA expression of IL-28 and IL-29.
Figure 3: IFN-like activities of IL-28 and IL-29.
Figure 4: Binding of IL-28A and IL-29.
Figure 5: Alignment of IL-28Rαv1 and IL-22Rα2.
Figure 6: IL-28Rα RNA expression analysis.
Figure 7: Requirement of IL-28Rα and IL-10Rβ for functional signaling.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. Pestka, S., Langer, J.A., Zoon, K.C. & Samuel, C.E. Interferons and their actions. Annu. Rev. Biochem. 56, 727–777 (1987).

    Article  CAS  Google Scholar 

  2. Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  Google Scholar 

  3. Kotenko, S.V. The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytok. Growth Factor Rev. 13, 223–240 (2002).

    Article  CAS  Google Scholar 

  4. Biron, C.A. Role of early cytokines, including alpha and beta interferons (IFN-α/β), in innate and adaptive immune responses to viral infections. Semin. Immunol. 10, 383–390 (1998).

    Article  CAS  Google Scholar 

  5. Fellous, M. et al. Interferon-dependent induction of mRNA for the major histocompatibility antigens in human fibroblasts and lymphoblastoid cells. Proc. Natl. Acad. Sci. USA 79, 3082–3086 (1982).

    Article  CAS  Google Scholar 

  6. Marrack, P., Kappler, J. & Mitchell, T. Type I interferons keep activated T cells alive. J. Exp. Med. 189, 521–530 (1999).

    Article  CAS  Google Scholar 

  7. Buelens, C. et al. Interleukin-3 and interferon β cooperate to induce differentiation of monocytes into dendritic cells with potent helper T-cell stimulatory properties. Blood 99, 993–998 (2002).

    Article  CAS  Google Scholar 

  8. Oritani, K. et al. Limitin: An interferon-like cytokine that preferentially influences B-lymphocyte precursors. Nat. Med. 6, 659–666 (2000).

    Article  CAS  Google Scholar 

  9. LaFleur, D.W. et al. Interferon-κ, a novel type I interferon expressed in human keratinocytes. J. Biol. Chem. 276, 39765–39771 (2001).

    Article  CAS  Google Scholar 

  10. Novick, D., Cohen, B. & Rubinstein, M. The human interferon α/β receptor: characterization and molecular cloning. Cell 77, 391–400 (1994).

    Article  CAS  Google Scholar 

  11. Uze, G., Lutfalla, G. & Gresser, I. Genetic transfer of a functional human interferon α receptor into mouse cells: cloning and expression of its cDNA. Cell 60, 225–234. (1990).

    Article  CAS  Google Scholar 

  12. Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H. & Schreiber, R.D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    Article  CAS  Google Scholar 

  13. Dumoutier, L., Van Roost, E., Colau, D. & Renauld, J.C. Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc. Natl. Acad. Sci. USA 97, 10144–10149 (2000).

    Article  CAS  Google Scholar 

  14. de Waal Malefyt, R., Abrams, J., Bennett, B., Figdor, C.G. & de Vries, J.E. Interleukin 10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J. Exp. Med. 174, 1209–1220 (1991).

    Article  CAS  Google Scholar 

  15. Fiorentino, D.F., Zlotnik, A., Mosmann, T.R., Howard, M. & O'Garra, A. IL-10 inhibits cytokine production by activated macrophages. J. Immunol. 147, 3815–3822 (1991).

    CAS  PubMed  Google Scholar 

  16. Kotenko, S.V. et al. Identification and functional characterization of a second chain of the interleukin-10 receptor complex. EMBO J. 16, 5894–5903 (1997).

    Article  CAS  Google Scholar 

  17. Xie, M.H. et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J. Biol. Chem. 275, 31335–31339 (2000).

    Article  CAS  Google Scholar 

  18. Kotenko, S.V. et al. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rβ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. J. Biol. Chem. 276, 2725–2732 (2001).

    Article  CAS  Google Scholar 

  19. Liu, Y., Wei, S.H., Ho, A.S., de Waal Malefyt, R. & Moore, K.W. Expression cloning and characterization of a human IL-10 receptor. J. Immunol. 152, 1821–1829 (1994).

    CAS  PubMed  Google Scholar 

  20. Xu, W. et al. A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc. Natl. Acad. Sci. USA 98, 9511–9516 (2001).

    Article  CAS  Google Scholar 

  21. Weber-Nordt, R.M. et al. Stat3 recruitment by two distinct ligand-induced, tyrosine-phosphorylated docking sites in the interleukin-10 receptor intracellular domain. J. Biol. Chem. 271, 27954–27961 (1996).

    Article  CAS  Google Scholar 

  22. Hubbard, T. et al. The Ensembl genome database project. Nucleic Acids Res. 30, 38–41 (2002).

    Article  CAS  Google Scholar 

  23. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  24. Raj, N.B. & Pitha, P.M. Two levels of regulation of β-interferon gene expression in human cells. Proc. Natl. Acad. Sci. USA 80, 3923–3927 (1983).

    Article  CAS  Google Scholar 

  25. Bazan, J.F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 87, 6934–6938 (1990).

    Article  CAS  Google Scholar 

  26. Dondi, E. et al. Down-modulation of type 1 interferon responses by receptor cross-competition for a shared Jak kinase. J. Biol. Chem. 276, 47004–47012 (2001).

    Article  CAS  Google Scholar 

  27. Gutterman, J.U. Cytokine therapeutics: lessons from interferon alpha. Proc. Natl. Acad. Sci. USA 91, 1198–1205 (1994).

    Article  CAS  Google Scholar 

  28. Dusheiko, G. Side effects of α interferon in chronic hepatitis C. Hepatology 26 (Suppl.) 112–121 (1997).

    Article  Google Scholar 

  29. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  30. von Heijne, G., Marrack, P., Kappler, J. & Mitchell, T. Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 133, 17–21 (1983).

    Article  CAS  Google Scholar 

  31. Blumberg, H. et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104, 9–19 (2001).

    Article  CAS  Google Scholar 

  32. Zdanov, A. et al. Crystal structure of interleukin-10 reveals the functional dimer with an unexpected topological similarity to interferon γ. Structure 3, 591–601 (1995).

    Article  CAS  Google Scholar 

  33. Radhakrishnan, R. et al. Zinc mediated dimer of human interferon-α2 revealed by X-ray crystallography. Structure 4, 1453–1463 (1996).

    Article  CAS  Google Scholar 

  34. Familletti, P.C., Rubinstein, S. & Pestka, S. A convenient and rapid cytopathic effect inhibition assay for interferon. Meth. Enzymol. 78, 387–394 (1981).

    Article  CAS  Google Scholar 

  35. Berg, K., Hansen, M.B. & Nielsen, S.E. A new sensitive bioassay for precise quantification of interferon activity as measured via the mitochondrial dehydrogenase function in cells (MTT-method). Apmis 98, 156–162 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. O'Hara, R. Adams and D. Sawislak for project advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Klucher.

Ethics declarations

Competing interests

All the authors of the article are employees of ZymoGenetics, Inc. and as such receive salaries and shares of stock in ZymoGenetics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheppard, P., Kindsvogel, W., Xu, W. et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4, 63–68 (2003). https://doi.org/10.1038/ni873

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing