Article | Published:

Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes

Nature Immunologyvolume 4pages7886 (2003) | Download Citation



CD4+ T cell priming under T helper type I (TH1) or TH2 conditions gives rise to polarized cytokine gene expression. We found that in these conditions human naive T cells acquired stable histone hyperacetylation at either the Ifng or Il4 promoter. Effector memory T cells showed polarized cytokine gene acetylation patterns in vivo, whereas central memory T cells had hypoacetylated cytokine genes but acquired polarized acetylation and expression after appropriate stimulation. However, hypoacetylation of the nonexpressed cytokine gene did not lead to irreversible silencing because most TH1 and TH2 cells acetylated and expressed the alternative gene when stimulated under opposite TH conditions. Such cytokine flexibility was absent in a subset of TH2 cells that failed to up-regulate T-bet and to express interferon-γ when stimulated under TH1 conditions. Thus, most human CD4+ T cells retain both memory and flexibility of cytokine gene expression.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Paul, W.E. & Seder, R.A. Lymphocyte responses and cytokines. Cell 76, 241–251 (1994).

  2. 2

    Romagnani, S. The Th1/Th2 paradigm. Immunol. Today 18, 263–266 (1997).

  3. 3

    Moser, M. & Murphy, K.M. Dendritic cell regulation of TH1-TH2 development. Nat. Immunol. 1, 199–205 (2000).

  4. 4

    Sallusto, F., Mackay, C.R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000).

  5. 5

    Campbell, J.J. & Butcher, E.C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

  6. 6

    Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

  7. 7

    Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors and memory cells. Science 290, 92–97 (2000).

  8. 8

    Kim, C.H., Campbell, D.J. & Butcher, E.C. Nonpolarized memory T cells. Trends Immunol. 22, 527–530 (2001).

  9. 9

    Sad, S. & Mosmann, T.R. Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J. Immunol. 153, 3514–3522 (1994).

  10. 10

    Sallusto, F., Lenig, D., Mackay, C.R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).

  11. 11

    Iezzi, G., Scotet, E., Scheidegger, D. & Lanzavecchia, A. The interplay between the duration of TCR and cytokine signalling determines T cell polarization. Eur. J. Immunol. 29, 4092–4101 (1999).

  12. 12

    Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat. Immunol. 1, 311–316 (2000).

  13. 13

    Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

  14. 14

    Wang, X. & Mosmann, T. In vivo priming of CD4 T cells that produce interleukin (IL)-2 but not IL-4 or interferon (IFN)-γ, and can subsequently differentiate into IL-4- or IFN-γ-secreting cells. J. Exp. Med. 194, 1069–1080 (2001).

  15. 15

    Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).

  16. 16

    Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

  17. 17

    Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

  18. 18

    Hislop, A.D., Annels, N.E., Gudgeon, N.H., Leese, A.M. & Rickinson, A.B. Epitope-specific evolution of human CD8+ T cell responses from primary to persistent phases of Epstein-Barr virus infection. J. Exp. Med. 195, 893–905 (2002).

  19. 19

    Murphy, K.M. et al. Signaling and transcription in T helper development. Annu. Rev. Immunol. 18, 451–494 (2000).

  20. 20

    Glimcher, L.H. & Murphy, K.M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

  21. 21

    Reiner, S.L. Helper T cell differentiation, inside and out. Curr. Opin. Immunol. 13, 351–355 (2001).

  22. 22

    Ho, I.C. & Glimcher, L.H. Transcription: tantalizing times for T cells. Cell 109 (Suppl.) 109–120 (2002).

  23. 23

    Rao, A. & Avni, O. Molecular aspects of T-cell differentiation. Br. Med. Bull. 56, 969–984 (2000).

  24. 24

    Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655–669 (2000).

  25. 25

    Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

  26. 26

    Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 13, 549–557 (2002).

  27. 27

    Szabo, S.J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

  28. 28

    Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

  29. 29

    Ho, I.C., Hodge, M.R., Rooney, J.W. & Glimcher, L.H. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973–983 (1996).

  30. 30

    Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

  31. 31

    Takemoto, N. et al. Cutting edge: chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for Th2-specific cytokine gene cluster. J. Immunol. 165, 6687–6691 (2000).

  32. 32

    Lee, G.R., Fields, P.E. & Flavell, R.A. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14, 447–459 (2001).

  33. 33

    Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).

  34. 34

    Mohrs, M. et al. Deletion of a coordinate regulator of type 2 cytokine expression in mice. Nat. Immunol. 2, 842–847 (2001).

  35. 35

    Kim, J.I., Ho, I.C., Grusby, M.J. & Glimcher, L.H. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745–751 (1999).

  36. 36

    Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

  37. 37

    Rogge, L. et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 185, 825–831 (1997).

  38. 38

    Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

  39. 39

    Paliard, X. et al. Simultaneous production of IL-2, IL-4, and IFN-γ by activated human CD4+ and CD8+ T cell clones. J. Immunol. 141, 849–855 (1988).

  40. 40

    Openshaw, P. et al. Heterogeneity of intracellular cytokine synthesis at the single-cell level in polarized T helper 1 and T helper 2 populations. J. Exp. Med. 182, 1357–1367 (1995).

  41. 41

    Smale, S.T. & Fisher, A.G. Chromatin structure and gene regulation in the immune system. Annu. Rev. Immunol. 20, 427–462 (2002).

  42. 42

    Tse, C., Sera, T., Wolffe, A.P. & Hansen, J.C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell Biol. 18, 4629–4638 (1998).

  43. 43

    Lee, D.Y., Hayes, J.J., Pruss, D. & Wolffe, A.P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73–84 (1993).

  44. 44

    Vettese-Dadey, M. et al. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15, 2508–2518 (1996).

  45. 45

    Vitolo, J.M., Thiriet, C. & Hayes, J.J. The H3-H4 N-terminal tail domains are the primary mediators of transcription factor IIIA access to 5S DNA within a nucleosome. Mol. Cell Biol. 20, 2167–2175 (2000).

  46. 46

    Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

  47. 47

    Jacobson, R.H., Ladurner, A.G., King, D.S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

  48. 48

    Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. & Allshire, R.C. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032 (1997).

  49. 49

    Cavalli, G. & Paro, R. Epigenetic inheritance of active chromatin after removal of the main transactivator. Science 286, 955–958 (1999).

  50. 50

    Avni, O. et al. TH cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nat. Immunol. 10, 643–651 (2002).

  51. 51

    Fields, P.E., Kim, S.T. & Flavell, R.A. Cutting edge: changes in histone acetylation at the IL-4 and IFN-γ loci accompany Th1/Th2 differentiation. J. Immunol. 169, 647–650 (2002).

  52. 52

    Loetscher, P. et al. CCR5 is characteristic of Th1 lymphocytes. Nature 391, 344–345 (1998).

  53. 53

    Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).

  54. 54

    Nagata, K. et al. Selective expression of a novel surface molecule by human Th2 cells in vivo. J. Immunol. 162, 1278–1286 (1999).

  55. 55

    Cosmi, L. et al. CRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and disease. Eur. J. Immunol. 30, 2972–2979 (2000).

  56. 56

    Noben-Trauth, N., Hu-Li, J. & Paul, W.E. IL-4 secreted from individual naive CD4+ T cells acts in an autocrine manner to induce Th2 differentiation. Eur. J. Immunol. 32, 1428–1433 (2002).

  57. 57

    Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

  58. 58

    Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913 (1996).

  59. 59

    Smits, H.H. et al. IL-12-induced reversal of human Th2 cells is accompanied by full restoration of IL-12 responsiveness and loss of GATA-3 expression. Eur. J. Immunol. 31, 1055–1065 (2001).

  60. 60

    Iwasaki, M. et al. Association of a new-type prostaglandin D2 receptor CRTH2 with circulating T helper 2 cells in patients with atopic dermatitis. J. Invest. Derm. 119, 609–616 (2002).

  61. 61

    Annunziato, F. et al. Reversal of human allergen-specific CRTH2+ TH2 cells by IL-12 or the PS-DSP30 oligodeoxynucleotide. J. Allergy Clin. Immunol. 108, 815–821 (2001).

  62. 62

    Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

  63. 63

    Kim, C.H. et al. Rules of chemokine receptor association with T cell polarization in vivo. J. Clin. Invest. 108, 1331–1339 (2001).

Download references


We thank D. Jarrossay for cell sorting; members of Natoli's lab and of Amaxa Biosystems GmbH for help with transfection experiments; and A. Gett and C. Mackay for critical reading and suggestions. Supported, in part, by the European Community (contract number QLK2-CT-201-01205); the San Salvatore Foundation (M.M.) and the Helmut Horten Foundation (A.L.).

Author information


  1. Institute for Research in Biomedicine, Via Vincenzo Vela 6, Bellinzona, CH-6500, Switzerland

    • Mara Messi
    • , Isabella Giacchetto
    • , Antonio Lanzavecchia
    • , Gioacchino Natoli
    •  & Federica Sallusto
  2. R&D Center, BML, 1361-1 Matoba, Kawagoe, 350-1101, Saitama, Japan

    • Kinya Nagata


  1. Search for Mara Messi in:

  2. Search for Isabella Giacchetto in:

  3. Search for Kinya Nagata in:

  4. Search for Antonio Lanzavecchia in:

  5. Search for Gioacchino Natoli in:

  6. Search for Federica Sallusto in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Federica Sallusto.

Supplementary information

  1. Web Fig. 1.

    Increased histone acetylation and cytokine production upon secondary stimulation. TH1 and TH2 cell lines, which were stimulated once or twice in polarizing conditions, were analyzed for histone acetylation (a) and cytokine production upon PMA-iono stimulation (b). (PDF 129 kb)

About this article

Publication history




Issue Date


Further reading