Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion

Abstract

Mice deficient in the adaptor protein SLP-65 (also known as BLNK) have reduced numbers of mature B cells, but an increased pre-B cell compartment. We show here that compared to wild-type cells, SLP-65−/− pre-B cells show an enhanced ex vivo proliferative capacity. This proliferation requires interleukin 7 and expression of the pre-B cell receptor (pre-BCR). In addition, SLP-65−/− mice have a high incidence of pre-B cell lymphoma. Reintroduction of SLP-65 into SLP-65−/− pre-B cells led to pre-BCR down-regulation and enhanced differentiation. Our results indicate that SLP-65 regulates a developmental program that promotes differentiation and limits pre-B cell expansion, thereby acting as a tumor suppressor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SLP-65−/− BM-derived B cells express large amounts of surface pre-BCR.
Figure 2: The enhanced proliferative capacity of SLP-65−/− BM-derived B cells depends on pre-BCR expression.
Figure 3: The pre-BCR of SLP-65−/− pre-B cell lines is expressed on proliferating cells and is signaling-competent.
Figure 4: Inhibition of Erk activation induces apoptosis in SLP-65−/− pre-B cell lines.
Figure 5: Reconstitution of SLP-65 expression results in down-regulation of surface pre-BCR expression.

Similar content being viewed by others

References

  1. Hardy, R.R., Carmack, C.E., Shinton, S.A., Kemp, J.D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991).

    Article  CAS  Google Scholar 

  2. Li, Y.S., Hayakawa, K. & Hardy, R.R. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J. Exp. Med. 178, 951–960 (1993).

    Article  CAS  Google Scholar 

  3. Rolink, A.G. et al. B cell development in the mouse from early progenitors to mature B cells. Immunol. Lett. 68, 89–93 (1999).

    Article  CAS  Google Scholar 

  4. Osmond, D.G., Rolink, A. & Melchers, F. Murine B lymphopoiesis: towards a unified model. Immunol. Today 19, 65–68 (1998).

    Article  CAS  Google Scholar 

  5. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  Google Scholar 

  6. Karasuyama, H. et al. The roles of preB cell receptor in early B cell development and its signal transduction. Immunol. Cell Biol. 75, 209–216 (1997).

    Article  CAS  Google Scholar 

  7. Martensson, I.-L. & Ceredig, R. Role of the surrogate light chain and the pre-B-cell receptor in mouse B cell development. Immunology 101, 435–441 (2000).

    Article  CAS  Google Scholar 

  8. Conley, M.E., Rohrer, J., Rapalus, L., Boylin, E.C. & Minegishi, Y. Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol. Rev. 178, 75–90 (2000).

    Article  CAS  Google Scholar 

  9. ten Boekel, E., Melchers, F. & Rolink, A.G. Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 8, 199–207 (1998).

    Article  CAS  Google Scholar 

  10. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K.A. B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin μ chain gene. Nature 350, 423–426 (1991).

    Article  CAS  Google Scholar 

  11. Kitamura, D. et al. A critical role of λ5 protein in B cell development. Cell 69, 823–831 (1992).

    Article  CAS  Google Scholar 

  12. Mundt, C., Licence, S., Shimizu, T., Melchers, F. & Martensson, I.L. Loss of precursor B cell expansion but not allelic exclusion in VpreB1/VpreB2 double-deficient mice. J. Exp. Med. 193, 435–445 (2001).

    Article  CAS  Google Scholar 

  13. Tamir, I. & Cambier, J.C. Antigen receptor signaling - integration of protein tyrosine kinase functions. Oncogene 17, 1353–1364 (1998).

    Article  CAS  Google Scholar 

  14. Kurosaki, T. Genetic analysis of B cell antigen receptor signaling. Annu. Rev. Immunol. 17, 555–592 (1999).

    Article  CAS  Google Scholar 

  15. Benschop, R.J. & Cambier, J.C. B cell development: signal transduction by antigen receptors and their surrogates. Curr. Opin. Immunol. 11, 143–151 (1999).

    Article  CAS  Google Scholar 

  16. Kelly, M.E. & Chan, A.C. Regulation of B cell function by linker proteins. Curr. Opin. Immunol. 12, 267–275 (2000).

    Article  CAS  Google Scholar 

  17. Myung, P.S., Boerthe, N.J. & Koretzky, G.A. Adapter proteins in lymphocyte antigen-receptor signaling. Curr. Opin. Immunol. 12, 256–266 (2000).

    Article  CAS  Google Scholar 

  18. Tomlinson, M.G., Lin, J. & Weiss, A. Lymphocytes with a complex: adapter proteins in antigen receptor signaling. Immunol. Today 21, 584–591 (2000).

    Article  CAS  Google Scholar 

  19. Pivniouk, V. et al. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein Slp-76. Cell 94, 229–238 (1998).

    Article  CAS  Google Scholar 

  20. Clements, J.L. et al. Requirement for the leukocyte-specific adapter protein Slp-76 for normal T-cell development. Science 281, 416–419 (1998).

    Article  CAS  Google Scholar 

  21. Zhang, W.G. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    Article  CAS  Google Scholar 

  22. Wienands, J. et al. Slp-65 - a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J. Exp. Med. 188, 791–795 (1998).

    Article  CAS  Google Scholar 

  23. Fu, C., Turck, C.W., Kurosaki, T. & Chan, A.C. Blnk - a central linker protein in B cell activation. Immunity 9, 93–103 (1998).

    Article  CAS  Google Scholar 

  24. Goitsuka, R. et al. Cutting Edge - Bash, a novel signaling molecule preferentially expressed in B cells of the Bursa of Fabricius. J. Immunol. 161, 5804–5808 (1998).

    CAS  PubMed  Google Scholar 

  25. Su, Y.W. et al. Interaction of SLP adaptors with the SH2 domain of Tec family kinases. Eur. J. Immunol. 29, 3702–3711 (1999).

    Article  CAS  Google Scholar 

  26. Hashimoto, S. et al. Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK - Functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood 94, 2357–2364 (1999).

    CAS  Google Scholar 

  27. Ishiai, M. et al. BLNK required for coupling Syk to PLC-γ2 and Rac1-JNK in B cells. Immunity 10, 117–125 (1999).

    Article  CAS  Google Scholar 

  28. Kurosaki, T. et al. Regulation of the phospholipase C-γ2 pathway in B cells. Immunol. Rev. 176, 19–29 (2000).

    Article  CAS  Google Scholar 

  29. Jumaa, H. et al. Abnormal development and function of B lymphocytes in mice deficient for the signaling adaptor protein SLP-65. Immunity 11, 547–554 (1999).

    Article  CAS  Google Scholar 

  30. Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development. Science 286, 1949–1954 (1999).

    Article  CAS  Google Scholar 

  31. Hayashi, K. et al. The B cell-restricted adaptor BASH is required for normal development and antigen receptor-mediated activation of B cells. Proc. Natl. Acad. Sci. USA 97, 2755–2760 (2000).

    Article  CAS  Google Scholar 

  32. Xu, S.L. et al. B cell development and activation defects resulting in xid-like immunodeficiency in BLNK/SLP-65-deficient mice. Int. Immunol. 12, 397–404 (2000).

    Article  CAS  Google Scholar 

  33. Rolink, A., Kudo, A., Karasuyama, H., Kikuchi, Y. & Melchers, F. Long-term proliferating early pre B cell lines and clones with the potential to develop to surface Ig-positive, mitogen reactive B cells in vitro and in vivo. EMBO J. 10, 327–336 (1991).

    Article  CAS  Google Scholar 

  34. Ray, R.J. et al. Stromal cell-independent maturation of Il-7-responsive pro-B cells. J. Immunol. 160, 5886–5897 (1998).

    CAS  PubMed  Google Scholar 

  35. Karasuyama, H. et al. The expression of Vpre-B/λ5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell 77, 133–143 (1994).

    Article  CAS  Google Scholar 

  36. Winkler, T.H., Rolink, A., Melchers, F. & Karasuyama, H. Precursor B cells of mouse bone marrow express two different complexes with the surrogate light chain on the surface. Eur. J. Immunol. 25, 446–450 (1995).

    Article  CAS  Google Scholar 

  37. Marshall, A.J., Fleming, H.E., Wu, G.E. & Paige, C.J. Modulation of the IL-7 dose-response threshold during pro-B cell differentiation is dependent on pre-B cell receptor expression. J. Immunol. 161, 6038–6045 (1998).

    CAS  PubMed  Google Scholar 

  38. Stephan, R.P., Elgavish, E., Karasuyama, H., Kubagawa, H. & Cooper, M.D. Analysis of VpreB expression during B lineage differentiation in λ5-deficient mice. J. Immunol. 167, 3734–3739 (2001).

    Article  CAS  Google Scholar 

  39. Grawunder, U. et al. Down-regulation of Rag1 and Rag2 gene expression in pre-B cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608 (1995).

    Article  CAS  Google Scholar 

  40. Craxton, A., Otipoby, K.L., Jiang, A.M. & Clark, A. Signal transduction pathways that regulate the fate of B lymphocytes. Adv. Immunol. 73, 79–152 (1999).

    Article  CAS  Google Scholar 

  41. Brazil, D.P. & Hemmings, B.A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26, 657–664 (2001).

    Article  CAS  Google Scholar 

  42. Ketteler, R., Glaser, S., Sandra, O., Martens, U.M. & Klingmüller, U. Enhanced transgene expression in primitive hematopoietic progenitor cells and embryonic stem cells efficiently transduced by optimized retroviral hybrid vectors. Gene Ther. 9, 477–487 (2002).

    Article  CAS  Google Scholar 

  43. Gugasyan, R. et al. Rel/NF-κB transcription factors: key mediators of B-cell activation. Immunol. Rev. 176, 134–140 (2000).

    Article  CAS  Google Scholar 

  44. Tan, J.E.L., Wong, S.C., Gan, S.K.E., Xu, S.L. & Lam, K.P. The adaptor protein BLNK is required for B cell antigen receptor-induced activation of nuclear factor-κB and cell cycle entry and survival of B lymphocytes. J. Biol. Chem. 276, 20055–20063 (2001).

    Article  CAS  Google Scholar 

  45. Shaw, A.C., Swat, W., Davidson, L. & Alt, F.W. Induction of Ig light chain gene rearrangement in heavy chain-deficient B cells by activated Ras. Proc. Natl. Acad. Sci. USA 96, 2239–2243 (1999).

    Article  CAS  Google Scholar 

  46. Shaw, A.C., Swat, W., Ferrini, R., Davidson, L. & Alt, F.W. Activated Ras signals developmental progression of recombinase-activating gene (RAG)-deficient pro-B lymphocytes. J. Exp. Med. 189, 123–129 (1999).

    Article  CAS  Google Scholar 

  47. Nagaoka, H. et al. Ras mediates effector pathways responsible for pre-B cell survival, which is essential for the developmental progression to the late pre-B cell stage. J. Exp. Med. 192, 171–181 (2000).

    Article  CAS  Google Scholar 

  48. Fleming, H.E. & Paige, C.J. Pre-B cell receptor signaling mediates selective response to IL-7 at the pro-B to pre-B cell transition via an Erk/MAP kinase-dependent pathway. Immunity 15, 521–531 (2001).

    Article  CAS  Google Scholar 

  49. Jumaa, H. & Nielsen, P.J. The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J. 16, 5077–5085 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Nielsen for critically reading the manuscript; A. Wuerch for cell sorting, C. Eschbach and M. Mitterer for technical help; U. Klingmüller for providing retroviral constructs and expert advice; H. Eibel and P. Richter for help in establishing the in vitro culture system. Supported by the Deutsche Forschungs Gemeinschaft through SFB 364 and the Leibniz program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Reth or Hassan Jumaa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Web Fig. 1.

The number of κ+ cells increases in SLP-65–/– , but not in WT pre-B cell cultures after IL-7 withdrawal. WT and SLP-65–/– pre-B cells from 1-week cultures were analyzed for κ expression and subsequently plated-out in medium lacking IL-7 for 2 days. The ratio of κ+ cells was determined before and after IL-7 withdrawal. (PDF 22 kb)

Web Fig. 2.

The enhanced proliferation capacity of SLP-65–/– BM-derived B cells depends on pre-BCR expansion. (a) c-Kit versus B220 FACS profiles of lymphocyte-gated cells derived from total BM littermates. (b) Sorted B220+ c-Kit+ cells were cultured in IL-7 (>1 ng/ml). Proliferation was assessed by counting at the indicated time points, values were averaged between duplicates. After 5 days of in vitro culture, the number of SLP-65–/– cells had increased 70-fold, whereas the number of WT cells had only increased 5.5-fold. (PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flemming, A., Brummer, T., Reth, M. et al. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat Immunol 4, 38–43 (2003). https://doi.org/10.1038/ni862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing