Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Langerhans cells renew in the skin throughout life under steady-state conditions

A Corrigendum to this article was published on 01 January 2003

Abstract

Langerhans cells (LCs) are bone marrow (BM)–derived epidermal dendritic cells (DCs) that represent a critical immunologic barrier to the external environment, but little is known about their life cycle. Here, we show that in lethally irradiated mice that had received BM transplants, LCs of host origin remained for at least 18 months, whereas DCs in other organs were almost completely replaced by donor cells within 2 months. In parabiotic mice with separate organs, but a shared blood circulation, there was no mixing of LCs. However, in skin exposed to ultraviolet light, LCs rapidly disappeared and were replaced by circulating LC precursors within 2 weeks. The recruitment of new LCs was dependent on their expression of the CCR2 chemokine receptor and on the secretion of CCR2-binding chemokines by inflamed skin. These data indicate that under steady-state conditions, LCs are maintained locally, but inflammatory changes in the skin result in their replacement by blood-borne LC progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LC chimerism after congenic BM transplantation.
Figure 2: Origin of LCs in parabiotic mice.
Figure 3: Rate of LC proliferation in chimeric mice.
Figure 4: LC homeostasis during skin inflammation.
Figure 5: Role of CCR2 in the recruitment of circulating LC precursors to inflamed skin.
Figure 6: MCP chemokines and injured skin.

Similar content being viewed by others

References

  1. Schuler, G. et al. Murine epidermal Langerhans cells as a model to study tissue dendritic cells. Adv. Exp. Med. Biol. 329, 243–249 (1993).

    Article  CAS  Google Scholar 

  2. Stingl, G., Tamaki, K. & Katz, S.I. Origin and function of epidermal Langerhans cells. Immunol. Rev. 53, 149–174 (1980).

    Article  CAS  Google Scholar 

  3. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  4. Schuler, G. & Steinman, R.M. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J. Exp. Med. 161, 526–546 (1985).

    Article  CAS  Google Scholar 

  5. Jakob, T., Ring, J. & Udey, M.C. Multistep navigation of Langerhans/dendritic cells in and out of the skin. J. Allergy Clin. Immunol. 108, 688–696 (2001).

    Article  CAS  Google Scholar 

  6. Hemmi, H. et al. Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-β1-dependent cells. Int. Immunol. 13, 695–704 (2001).

    Article  CAS  Google Scholar 

  7. Katz, S.I., Tamaki, K. & Sachs, D.H. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 282, 324–326 (1979).

    Article  CAS  Google Scholar 

  8. Krueger, G.G., Daynes, R.A. & Emam, M. Biology of Langerhans cells: selective migration of Langerhans cells into allogeneic and xenogeneic grafts on nude mice. Proc. Natl. Acad. Sci. USA 80, 1650–1654 (1983).

    Article  CAS  Google Scholar 

  9. Butcher, E.C. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  CAS  Google Scholar 

  10. Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314 (1994).

    Article  CAS  Google Scholar 

  11. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    Article  CAS  Google Scholar 

  12. Sebastiani, S. et al. The role of chemokines in allergic contact dermatitis. Arch. Dermatol. Res. 293, 552–559 (2002).

    Article  CAS  Google Scholar 

  13. Barker, J.N. et al. Monocyte chemotaxis and activating factor production by keratinocytes in response to IFN-γ. J. Immunol. 146, 1192–1197 (1991).

    CAS  PubMed  Google Scholar 

  14. Campbell, J.J. et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400, 776–780 (1999).

    Article  CAS  Google Scholar 

  15. Katou, F. et al. Macrophage-derived chemokine (MDC/CCL22) and CCR4 are involved in the formation of T lymphocyte-dendritic cell clusters in human inflamed skin and secondary lymphoid tissue. Am. J. Pathol. 158, 1263–1270 (2001).

    Article  CAS  Google Scholar 

  16. Dieu-Nosjean, M.C. et al. Macrophage inflammatory protein 3α is expressed at inflamed epithelial surfaces and is the most potent chemokine known in attracting Langerhans cell precursors. J. Exp. Med. 192, 705–718 (2000).

    Article  CAS  Google Scholar 

  17. Nakayama, T. et al. Inducible expression of a CC chemokine liver- and activation-regulated chemokine (LARC)/macrophage inflammatory protein (MIP)-3α/CCL20 by epidermal keratinocytes and its role in atopic dermatitis. Int. Immunol. 13, 95–103 (2001).

    Article  CAS  Google Scholar 

  18. Tensen, C.P. et al. Human IP-9: A keratinocyte-derived high affinity CXC-chemokine ligand for the IP-10/Mig receptor (CXCR3). J. Invest. Dermatol. 112, 716–722 (1999).

    Article  CAS  Google Scholar 

  19. Flier, J. et al. Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J. Pathol. 194, 398–405 (2001).

    Article  CAS  Google Scholar 

  20. Pablos, J.L. et al. Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin. Am. J. Pathol. 155, 1577–1586 (1999).

    Article  CAS  Google Scholar 

  21. Morales, J. et al. CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc. Natl. Acad. Sci. USA 96, 14470–14475 (1999).

    Article  CAS  Google Scholar 

  22. Cumberbatch, M., Illingworth, I. & Kimber, I. Antigen-bearing dendritic cells in the draining lymph nodes of contact sensitized mice: cluster formation with lymphocytes. Immunology 74, 139–145 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Geissmann, F. et al. Transforming growth factor β1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J. Exp. Med. 187, 961–966 (1998).

    Article  CAS  Google Scholar 

  24. del Hoyo, G.M. et al. Characterization of a common precursor population for dendritic cells. Nature 415, 1043–1047 (2002).

    Article  Google Scholar 

  25. Larregina, A.T. et al. Dermal-resident CD14+ cells differentiate into Langerhans cells. Nature Immunol. 2, 1151–1158 (2001).

    Article  CAS  Google Scholar 

  26. Caux, C., Dezutter-Dambuyant, C., Schmitt, D. & Banchereau, J. GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nature 360, 258–261 (1992).

    Article  CAS  Google Scholar 

  27. Sato, N. et al. CC chemokine receptor (CCR)2 is required for langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells. Absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, b cell outgrowth, and sustained neutrophilic inflammation. J. Exp. Med. 192, 205–218 (2000).

    Article  CAS  Google Scholar 

  28. Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

    Article  CAS  Google Scholar 

  29. Nieto, M. et al. Polarization of chemokine receptors to the leading edge during lymphocyte chemotaxis. J. Exp. Med. 186, 153–158 (1997).

    Article  CAS  Google Scholar 

  30. Ying, S., Taborda-Barata, L., Meng, Q., Humbert, M. & Kay, A.B. The kinetics of allergen-induced transcription of messenger RNA for monocyte chemotactic protein-3 and RANTES in the skin of human atopic subjects: relationship to eosinophil, T cell, and macrophage recruitment. J. Exp. Med. 181, 2153–2159 (1995).

    Article  CAS  Google Scholar 

  31. Nakamura, K., Williams, I.R. & Kupper, T.S. Keratinocyte-derived monocyte chemoattractant protein 1 (MCP-1): analysis in a transgenic model demonstrates MCP-1 can recruit dendritic and Langerhans cells to skin. J. Invest. Dermatol. 105, 635–643 (1995).

    Article  CAS  Google Scholar 

  32. Foster, C.A., Holbrook, K.A. & Farr, A.G. Ontogeny of Langerhans cells in human embryonic and fetal skin: expression of HLA-DR and OKT-6 determinants. J. Invest. Dermatol. 86, 240–243 (1986).

    Article  CAS  Google Scholar 

  33. Kobayashi, M., Asano, H., Fujita, Y. & Hoshino, T. Development of ATPase-positive, immature Langerhans cells in the fetal mouse epidermis and their maturation during the early postnatal period. Cell Tiss. Res. 248, 315–322 (1987).

    Article  CAS  Google Scholar 

  34. Hsiao, L., Takeya, M., Arao, T. & Takahashi, K. An immunohistochemical and immunoelectron microscopic study of the ontogeny of rat Langerhans cell lineage with anti-macrophage and anti-Ia monoclonal antibodies. J. Invest. Dermatol. 93, 780–786 (1989).

    Article  CAS  Google Scholar 

  35. Tamaki, K., Stingl, G. & Katz, S.I. The origin of Langerhans cells. J. Invest. Dermatol. 74, 309–311 (1980).

    Article  CAS  Google Scholar 

  36. Pugh, C.W., MacPherson, G.G. & Steer, H.W. Characterization of nonlymphoid cells derived from rat peripheral lymph. J. Exp. Med. 157, 1758–1779 (1983).

    Article  CAS  Google Scholar 

  37. Fossum, S. Dendritic leukocytes: features of their in vivo physiology. Res. Immunol. 140, 883–891 (1989).

    Article  CAS  Google Scholar 

  38. Holt, P.G., Haining, S., Nelson, D.J. & Sedgwick, J.D. Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. J. Immunol. 153, 256–261 (1994).

    CAS  PubMed  Google Scholar 

  39. Ghaznawie, M., Papadimitriou, J.M. & Heenan, P.J. The steady-state turnover of murine epidermal Langerhans cells. Br. J. Dermatol. 141, 57–61 (1999).

    Article  CAS  Google Scholar 

  40. Czernielewski, J., Vaigot, P. & Prunieras, M. Epidermal Langerhans cells–a cycling cell population. J. Invest. Dermatol. 84, 424–426 (1985).

    Article  CAS  Google Scholar 

  41. Czernielewski, J.M. & Demarchez, M. Further evidence for the self-reproducing capacity of Langerhans cells in human skin. J. Invest. Dermatol. 88, 17–20 (1987).

    Article  CAS  Google Scholar 

  42. Miyauchi, S. & Hashimoto, K. Epidermal Langerhans cells undergo mitosis during the early recovery phase after ultraviolet-B irradiation. J. Invest. Dermatol. 88, 703–708 (1987).

    Article  CAS  Google Scholar 

  43. Krueger, G.G. & Emam, M. Biology of Langerhans cells: analysis by experiments to deplete Langerhans cells from human skin. J. Invest. Dermatol. 82, 613–617 (1984).

    Article  CAS  Google Scholar 

  44. Ghaznawie, M., Papadimitriou, J.M. & Heenan, P.J. The repopulation of murine Langerhans cells after depletion by mild heat injury. Br. J. Dermatol. 141, 206–210 (1999).

    Article  CAS  Google Scholar 

  45. Lu, B. et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J. Exp. Med. 187, 601–608 (1998).

    Article  CAS  Google Scholar 

  46. Kurihara, T., Warr, G., Loy, J. & Bravo, R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med. 186, 1757–1762 (1997).

    Article  CAS  Google Scholar 

  47. Peters, W., Dupuis, M. & Charo, I.F. A mechanism for the impaired IFN-γ production in C-C chemokine receptor 2 (CCR2) knockout mice: role of CCR2 in linking the innate and adaptive immune responses. J. Immunol. 165, 7072–7077 (2000).

    Article  CAS  Google Scholar 

  48. Belperio, J.A. et al. Critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome. J. Clin. Invest. 108, 547–556 (2001).

    Article  CAS  Google Scholar 

  49. Vanbervliet, B. et al. Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur. J. Immunol. 32, 231–242 (2002).

    Article  CAS  Google Scholar 

  50. van Furth, R. & Cohn, Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  CAS  Google Scholar 

  51. Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L. & Weissman, I.L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Benike for critical review of the manuscript, M. Katics for excellent animal care and D. Jones for formatting the manuscript. Supported by Ernst Schering Research Foundation (H. K.) and by grants from the National Institutes of Health (HL57443) and the Tobacco-Related Disease Research Program (9RT-0229) (to E. G. E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Merad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merad, M., Manz, M., Karsunky, H. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3, 1135–1141 (2002). https://doi.org/10.1038/ni852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing