Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imaging antigen-induced PI3K activation in T cells

Abstract

Activation of phosphoinositide 3-kinase (PI3K) at the immunological synapse between a T cell and an antigen-presenting cell (APC) has not been demonstrated. Using fluorescent-specific probes, we show here that the formation of an immunological synapse led to sustained production of 3′-phosphoinositides in the T cell, whereby phosphatidylinositol-3,4,5-trisphosphate (PIP3) but not phosphatidylinositol-3,4-bisphosphate was localized to the cell membrane. The accumulation of PIP3 after T cell activation preceded the increase in intracellular calcium. Neither the formation of conjugates between T cells and APCs nor signaling events such as phosphotyrosine accumulation and calcium increase changed substantially when PI3K was inhibited, and only a limited reduction in synthesis of interleukin 2 occurred. In T cell–APC conjugates, PIP3 accumulated at the T cell–APC synapse as well as in the rest of the T cell plasma membrane, which indicated unusual regulation of PI3K activity during antigen presentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane localization of GFP–Akt-PH in a T cell hybridoma.
Figure 2: Inhibition of Akt membrane relocalization by wortmannin.
Figure 3: Dynamics of Akt and GFP distribution after T cell–APC interaction.
Figure 4: Accumulation of PIP3 after antigen recognition.
Figure 5: PI3K activity and active synapse formation after antigen recognition.
Figure 6: Distribution of Akt in human T cell-DC conjugates.
Figure 7: Dynamics of Akt relocalization during human T cell-DC interaction.

Similar content being viewed by others

References

  1. Paul, W.E. & Seder, R.A. Lymphocyte responses and cytokines. Cell 76, 241–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Shaw, A.S. & Dustin, M.L. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6, 361–369 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Monks, C.R.F., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolacular activation clusters in T cells. Nature 395, 82–86 (1999).

    Article  Google Scholar 

  5. Krummel, M.F., Sjaastad, M.D., Wulfing, C. & Davis, M.M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Leupin, O., Zaru, R., Laroche, T., Müller, S. & Valitutti, S. Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes. Curr. Biol. 10, 277–280 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Tuosto, L. & Acuto, O. CD28 affects the earliest signaling events generated by TCR engagement. Eur. J. Immunol. 28, 2131–2142 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Bromley, S.K. et al. The immunological synapse and CD28-CD80 interactions. Nature Immunol. 2, 1159–1166 (2001).

    Article  CAS  Google Scholar 

  9. Morgan, M.M. et al. Superantigen-induced T cell:B cell conjugation is mediated by LFA-1 and requires signaling through Lck, but not ZAP-70. J. Immunol. 167, 5708–5718 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Wulfing, C. & Davis, M.M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Delon, J., Bercovici, N., Liblau, R. & Trautmann, A. Imaging antigen recognition by naive CD4+ T cells: compulsory cytoskeletal alterations for the triggering of an intracellular calcium response. Eur. J. Immunol. 28, 716–729 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Cantrell, D. T cell antigen receptor signal transduction pathways. Annu. Rev. Immunol. 14, 259–274 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Mustelin, T., Coggeshall, K.M., Isakov, N. & Altman, A. T cell antigen receptor-mediated activation of phospholipase C requires tyrosine phosphorylation. Science 247, 1584–1587 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Divecha, N. & Irvine, R.F. Phospholipid signaling. Cell 80, 269–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Lemmon, M.A., Ferguson, K.M. & Abrams, C.S. Pleckstrin homology domains and the cytoskeleton. FEBS Lett. 513, 71–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Rebecchi, M.J. & Scarlata, S. Pleckstrin homology domains: a common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct. 27, 503–528 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Kavran, J.M. et al. Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J. Biol. Chem. 273, 30497–30508 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Rameh, L.E. et al. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J. Biol. Chem. 272, 22059–22066 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Burgering, B.M. & Coffer, P.J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Datta, K., Bellacosa, A., Chan, T.O. & Tsichlis, P.N. Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J. Biol. Chem. 271, 30835–30839 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Gray, A., Van Der Kaay, J. & Downes, C.P. The pleckstrin homology domains of protein kinase B and GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem. J. 344, 929–936 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Astoul, E., Watton, S. & Cantrell, D. The dynamics of protein kinase B regulation during B cell antigen receptor engagement. J. Cell Biol. 145, 1511–1520 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Astoul, E., Cantrell, D.A., Edmunds, C. & Ward, S.G. PI 3-K and T-cell activation: limitations of T-leukemic cell lines as signaling models. Trends Immunol. 22, 490–496 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Genot, E. & Cantrell, D.A. Ras regulation and function in lymphocytes. Curr. Opin. Immunol. 12, 289–294 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Alessi, D.R. et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15, 6541–6551 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anderson, K.E., Coadwell, J., Stephens, L.R. & Hawkins, P.T. Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr. Biol. 8, 684–691 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Weiner, O.D. et al. Spatial control of actin polymerization during neutrophil chemotaxis. Nature Cell Biol. 1, 75–81 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez-Madrid, F. & del Pozo, M.A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Weiner, O.D. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr. Opin. Cell Biol. 14, 196–202 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meili, R. et al. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 18, 2092–2105 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haugh, J.M., Codazzi, F., Teruel, M. & Meyer, T. Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J. Cell Biol. 151, 1269–1280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ridley, A.J. Rho proteins, PI 3-kinases, and monocyte/macrophage motility. FEBS Lett. 498, 168–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Rickert, P., Weiner, O.D., Wang, F., Bourne, H.R. & Servant, G. Leukocytes navigate by compass: roles of PI3Kg and its lipid products. Trends Cell Biol. 10, 466–473 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van der Kaay, J., Beck, M., Gray, A. & Downes, C.P. Distinct phosphatidylinositol 3-kinase lipid products accumulate upon oxidative and osmotic stress and lead to different cellular responses. J. Biol. Chem. 274, 35963–35968 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Banfic, H. et al. A novel integrin-activated pathway forms PKB/Akt-stimulatory phosphatidylinositol 3,4-bisphosphate via phosphatidylinositol 3-phosphate in platelets. J. Biol. Chem. 273, 13–16 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Holgado-Madruga, M., Emlet, D.R., Moscatello, D.K., Godwin, A.K. & Wong, A.J. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 379, 560–564 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Ferguson, K.M. et al. Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Molecular Cell 6, 373–384 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Dowler, S. et al. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem. J. 351, 19–31 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kimber, W.A. et al. Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo. Biochem. J. 361, 525–536 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Marshall, A.J., Krahn, A.K., Ma, K., Duronio, V. & Hou, S. TAPP1 and TAPP2 are targets of phosphatidylinositol 3-kinase signaling in B cells: Sustained plasma membrane recruitment triggered by the B-cell antigen receptor. Mol. Cell. Biol. 22, 5479–5491 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Donnadieu, E. et al. Differential roles of Lck and Itk in T cell response to antigen recognition revealed by calcium imaging and electron microscopy. J. Immunol. 166, 5540–5549 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Chung, C.Y., Funamoto, S. & Firtel, R.A. Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem. Sci. 26, 557–566 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Krummel, M.F. & Davis, M.M. Dynamics of the immunological synapse: finding, establishing and solidifying a connection. Curr. Opin. Immunol. 14, 66–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Haefner, B., Baxter, R., Fincham, V.J., Downes, C.P. & Frame, M.C. Cooperation of Src homology domains in the regulated binding of phosphatidylinositol 3-kinase. A role for the Src homology 2 domain. J. Biol. Chem. 270, 7937–7943 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Pages, F. et al. Two distinct intracytoplasmic regions of the T-cell adhesion molecule CD28 participate in phosphatidylinositol 3-kinase association. J. Biol. Chem. 271, 9403–9409 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Bruyns, E. et al. T cell receptor (TCR) interacting molecule (TRIM), a novel disulfide-linked dimer associated with the TCR-CD3-ζ complex, recruits intracellular signaling proteins to the plasma membrane. J. Exp. Med. 188, 561–575 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R.P. & Samelson, L.E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Truitt, K.E. et al. CD28 delivers costimulatory signals independently of its association with phosphatidylinositol 3-kinase. J. Immunol. 155, 4702–4710 (1995).

    CAS  PubMed  Google Scholar 

  50. Ni, H.T., Deeths, M.J. & Mescher, M.F. Phosphatidylinositol 3 kinase activity is not essential for B7-1-mediated costimulation of proliferation or development of cytotoxicity in murine T cells. J. Immunol. 157, 2243–2246 (1996).

    CAS  PubMed  Google Scholar 

  51. Shi, J., Cinek, T., Truitt, K.E. & Imboden, J.B. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, blocks antigen-mediated, but not CD3 monoclonal antibody-induced, activation of murine CD4+ T cells. J. Immunol. 158, 4688–4695 (1997).

    CAS  PubMed  Google Scholar 

  52. Weiner, O.D. et al. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biol. 24, 509–512 (2002).

    Article  Google Scholar 

  53. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nature Cell Biol. 24, 513–518 (2002).

    Article  Google Scholar 

  54. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R.A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Blank, U., Boitel, B., Mege, D., Ermonval, M. & Acuto, O. Analysis of tetanus toxin peptide/DR recognition by human T cell receptors reconstituted into a murine T cell hybridoma. Eur. J. Immunol. 23, 3057–3065 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Ingham, R.J. et al. The Gab1 docking protein links the B cell antigen receptor to the phosphatidylinositol 3-kinase/Akt signaling pathway and to the SHP2 tyrosine phosphatase. J. Biol. Chem. 276, 12257–12265 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Takebe, Y. et al. SRα: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol. Cell. Biol. 8, 466–472 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Donnadieu, C. Randriamampita and A. Trautmann for their comments on the manuscript; C. Arrieumerlou for discussions; and M.O. Lhuillier for the movies. Supported by the Fondation pour la Recherche Médicale (J.H.) and grants from Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique and the Ligue Nationale contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Bismuth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Web Movie 1.

GFP-Akt-PH translocation in T cell-APC conjugates. L625.7 cells were plated on glass coverslips mounted on Petri dishes and incubated overnight at 37 °C with antigen [1 μg/ml tt(830-843) peptide] before the addition of GFP-Akt-PH-expressing T8.1 cells previously loaded with Fura-2/AM. Transmitted light, fluorescence and intracellular calcium were measured every 10 s for 20 min. Transmitted light images are superimposed on fluorescence images showing Akt distribution. The black arrow indicates the conjugate shown in Fig. 1. Insert, left side, calcium response in the same conjugates. (AVI 4605 kb)

Web Movie 2.

Inhibition of Akt membrane relocalization by wortmannin. T8.1 cells were incubated with Fura-2/AM and 100 nM wortmannin at 37 °C for 20 min before being added to antigen-pulsed L625.7 cells. Transmitted light images are superimposed on calcium (left) and fluorescence images (right). Images were acquired every 10 sec for 18 min. (AVI 1683 kb)

Web Movie 3.

Delocalization of Akt in a T cell-APC conjugate after PI3K inhibition. T8.1 cells were incubated with Fura-2/AM and added to L625.7 cells pulsed with antigen. Then, 7 min after the beginning of acquisition, 1 ml of buffer containing 100 nM wortmannin was added (+WTN). Transmitted light images are superimposed on calcium images (left) and fluorescence images (right). Images were acquired every 10 sec for 16 min. (AVI 1547 kb)

Web Movie 4.

GFP-Akt-PH translocation in human T cells interacting with DCs. DCs were plated on polylysine-coated glass coverslips in the presence of 0.1 μg/ml SEE. Human primary T cells, transiently transfected with GFP-Akt-PH, were added. Left, transmitted light images; right, distribution of Akt. Images were acquired every 10 s for 17 min. (AVI 1806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harriague, J., Bismuth, G. Imaging antigen-induced PI3K activation in T cells. Nat Immunol 3, 1090–1096 (2002). https://doi.org/10.1038/ni847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing