Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thymocyte expression of cathepsin L is essential for NKT cell development

Abstract

CD1d antigen presentation to natural killer T (NKT) cells expressing the semi-invariant T cell receptor Vα14Jα18 requires CD1d trafficking through endosomal compartments; however, the endosomal events remain undefined. We show that mice lacking the endosomal protease cathepsin L (catL) have greatly reduced numbers of Vα14+NK1.1+ T cells. In addition, catL expression in thymocytes is critical not only for selection of these cells in vivo but also for stimulation of Vα14+NK1.1+ T cells in vitro. CD1d cell-surface expression and intracellular localization appear normal in catL-deficient thymocytes, as does the lysosomal morphology; this implies a specific role for catL in regulating presentation of natural CD1d ligands mediating Vα14+NK1.1+ T cell selection. These data implicate lysosomal proteases as key regulators of not only classical major histocompatibility complex class II antigen presentation but also nonclassical CD1d presentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired selection of Vα14+ NKT cells in catL-deficient mice.
Figure 2: Impaired stimulation of a Vα14+ NKT cell hybridoma by catL-deficient thymocytes.
Figure 3: CatL-deficient thymocytes exhibit normal cellular distribution and endosomal morphology.
Figure 4: Analysis of Vα14+ NKT cell selection in bone marrow–chimeric mice.
Figure 5: CatL-deficient thymocytes gain functional catL in vivo in the presence of catL-sufficient thymic stroma.

Similar content being viewed by others

References

  1. Godfrey, D.I., Hammond, K.J., Poulton, L.D., Smyth, M.J. & Baxter, A.G. NKT cells: facts, functions and fallacies. Immunol. Today 21, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Bendelac, A., Bonneville, M. & Kearney, J.F. Autoreactivity by design: innate B and T lymphocytes. Nature Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  Google Scholar 

  3. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Coles, M.C. & Raulet, D.H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol. 164, 2412–2418 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Castano, A.R. et al. Peptide binding and presentation by mouse CD1. Science 269, 223–226 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Zeng, Z. et al. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277, 339–345 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, D.J., Abeyratne, A., Carson, D.A. & Corr, M. Induction of an antigen-specific, CD1-restricted cytotoxic T lymphocyte response in vivo. J. Exp. Med. 187, 433–438 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Joyce, S. et al. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279, 1541–1544 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Sieling, P.A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227–230 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Chiu, Y.H. et al. Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J. Exp. Med. 189, 103–110 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiu, Y.H. et al. Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nature Immunol. 3, 55–60 (2002).

    Article  CAS  Google Scholar 

  12. Roberts, T.J. et al. Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J. Immunol. 168, 5409–5414 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Sugita, M. et al. Failure of trafficking and antigen presentation by CD1 in AP-3- deficient cells. Immunity 16, 697–706 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Prigozy, T.I. et al. Glycolipid antigen processing for presentation by CD1d molecules. Science 291, 664–667 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Nakagawa, T. et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280, 450–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Nakagawa, T.Y. et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10, 207–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Honey, K., Nakagawa, T., Peters, C. & Rudensky, A. Cathepsin L regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J. Exp. Med. 195, 1349–1358 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jayawardena-Wolf, J., Benlagha, K., Chiu, Y.H., Mehr, R. & Bendelac, A. CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15, 897–908 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Riese, R.J. et al. Regulation of CD1 function and NK1.1+ T cell selection and maturation by cathepsin S. Immunity 15, 909–919 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Kang, S.J. & Cresswell, P. Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. EMBO J. 21, 1650–1660 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Park, S.H. et al. The mouse CD1d-restricted repertoire is dominated by a few autoreactive T cell receptor families. J. Exp. Med. 193, 893–904 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Driessen, C. et al. Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. J. Cell Biol. 147, 775–790 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi, G.P. et al. Cathepsin S required for normal MHC class II peptide loading and germinal center development. Immunity 10, 197–206 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Stypmann, J. et al. Dilated cardiomyopathy in mice deficient for the lysosomal cysteine peptidase cathepsin L. Proc. Natl. Acad. Sci. USA 99, 6234–6239 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schuchman, E.H. & Desnick, R. in The Metabolic and Molecular Basis of Inherited Disease edn. 8 Vol. 3 (eds. Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 3589–3610 (McGraw-Hill Inc., New York, NY, 2001).

    Google Scholar 

  29. Gravel, R.A. et al. in The Metabolic and Molecular Basis of Inherited Disease edn. 8 Vol. 3 (eds. Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 3827–3876 (McGraw-Hill Inc., New York, NY, 2001).

    Google Scholar 

  30. Dittmer, F. et al. Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6-phosphate receptor-deficient mice are cell type-specific. J. Cell Sci. 112, 1591–1597 (1999).

    CAS  PubMed  Google Scholar 

  31. Heylen, N. et al. Fibroblasts capture cathepsin D secreted by breast cancer cells: Possible role in the regulation of the invasive process. Int. J. Oncol. 20, 761–767 (2002).

    CAS  PubMed  Google Scholar 

  32. Motyka, B. et al. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103, 491–500 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Honey, K. et al. Cathepsin S regulates the expression of cathepsin L and the turnover of γ-interferon-inducible lysosomal thiol reductase in B lymphocytes. J. Biol. Chem. 276, 22573–22578 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Raposo, G., Kleijmeer, M.J., Posthuma, G., Slot, J.W. & Geuze, H.J. in Weirs Handbook of Experimental Immunology edn. 5 Vol. 4 (eds. Herzenberg, L. A., Weir, D. M. & Blackwell, C.) 208.1–208.11 (Blackwell Science Inc., Malden, MA, 1997).

    Google Scholar 

Download references

Acknowledgements

Supported by the Howard Hughes Medical Institute (K. H. and A. R.) and the National Institute of Health (A. R. and A. B.), American Cancer Society (A. B.), NOW (M. J. K. grant 805-48-014) and the Leukemia and Lymphoma Society of America (K. B.). We thank G. Gillard, J. Griffith, C. Hsieh and P. Gough for excellent technical assistance, helpful discussions and critical review of the manuscript. R. Scriwanek and M. van Peski helped with the photography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Y. Rudensky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honey, K., Benlagha, K., Beers, C. et al. Thymocyte expression of cathepsin L is essential for NKT cell development. Nat Immunol 3, 1069–1074 (2002). https://doi.org/10.1038/ni844

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni844

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing