Staging and resetting T cell activation in SMACs

Abstract

During the productive interaction of T cells with antigen-presenting cells (APCs), engaged receptors, including the T cell antigen receptors and their associated tyrosine kinases, assemble into spatially segregated supramolecular activation clusters (SMACs) at the area of cell contact. Here, we studied intracellular signaling in SMACs by three-dimensional immunofluorescence microscopic localization of CD3, CD45, talin, phosphotyrosine, Lck and phosphorylated ZAP-70 in T cell–APC conjugates. Two distinct phases of spatial-temporal activation, one before and one after SMAC formation, which were separated by a brief state of inactivation caused by CD45, were observed at the T cell–APC contact area. We propose that pre-SMAC signals are sufficient to activate cell adhesion, but not productive T cell responses, which require orchestrated signaling in SMACs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spatial and temporal clustering of talin and pY at the 3D-reconstructed T cell–APC contact site.
Figure 2: Spatial-temporal colocalization and segregation of Lck and CD45 at the 3D-reconstructed T cell–APC contact site.
Figure 3: Spatial-temporal redistribution of CD45 into the dSMAC but not the pSMAC.
Figure 4: Transient recruitment of CD45 to engaged TCRs induced by immobilized peptide–I-Ek tetramers.
Figure 5: Detection of FRET between CD3 and CD45 in the cSMAC.
Figure 6: The spatial-temporal appearance of phosphorylated ZAP-70 in the T cell–APC contact.

References

  1. 1

    Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    CAS  Article  Google Scholar 

  2. 2

    Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Matsui, K. et al. Low affinity interaction of peptide-MHC complexes with T cell receptors. Science 254, 1788–1791 (1991).

    CAS  Article  Google Scholar 

  4. 4

    Boniface, J.J. et al. Initiation of signal transduction through the T cell receptor requires the peptide multivalent engagement of MHC ligands. Immunity 9, 459–466 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Hamad, A.R.A. et al. Potent T cell activation with dimeric peptide-major histocompatibility complex class II ligand: the role of CD4 coreceptor. J. Exp. Med. 188, 1633–1640 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Caron, L., Abraham, N., Pawson, T. & Veillette, A. Structural requirements for enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Mol. Cell. Biol. 12, 2720–2729 (1992).

    CAS  Article  Google Scholar 

  7. 7

    Yamaguchi, H. & Hendrickson, W.A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384, 484–489 (1996).

    CAS  Article  Google Scholar 

  8. 8

    Xu, W., Harrison, S.C. & Eck, M.J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595–602 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Sicheri, F., Moarefi, I. & Kuriyan, J. Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–609 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Trowbridge, I.S. & Thomas, M.L. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85–116 (1994).

    CAS  Article  Google Scholar 

  11. 11

    Thomas, M.L. & Brown, E.J. Positive and negative regulation of Src-family membrane kinases by CD45. Immunol. Today 20, 406–411 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Ashwell, J.D. & D'Oro, U. CD45 and Src-family kinases: and now for something completely different. Immunol. Today 20, 412–416 (1999).

    CAS  Article  Google Scholar 

  13. 13

    D'Oro, U. & Ashwell, J.D. The CD45 tyrosine phosphatase is an inhibitor of Lck activity in thymocytes. J. Immunol. 162, 1879–1883 (1999).

    CAS  PubMed  Google Scholar 

  14. 14

    Stone, J.D. et al. Aberrant TCR-mediated signaling in CD45-null thymocytes involves dysfunctional regulation of Lck, Fyn, TCR-ζ, and ZAP-70. J. Immunol. 158, 5773–5782 (1997).

    CAS  Google Scholar 

  15. 15

    Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Rodgers, W. & Rose, J.K. Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains. J. Cell Biol. 135 1515–1523 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Janes, P.W., Ley, S.C. & Magee, A.I. Aggregation of lipid rafts accompanies signaling via the T cell antigen receptor. J. Cell Biol. 147, 447–461 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Kupfer, A. & Singer, S.J. The specific interaction of helper T cells and antigen-presenting B cells. IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose. J. Exp. Med. 170, 1697–1713 (1989).

    CAS  Article  Google Scholar 

  21. 21

    Shenoi, H., Seavitt, J., Zheleznyak, A., Thomas, M.L. & Brown, E.J. Regulation of integrin-mediated T cell adhesion by the transmembrane protein tyrosine phosphatase CD45. J. Immunol. 162, 7120–7127 (1999).

    CAS  PubMed  Google Scholar 

  22. 22

    Singer, S.J. Intercellular communication and cell-cell adhesion. Science 255, 1671–1677 (1992).

    CAS  Article  Google Scholar 

  23. 23

    Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Kenworthy, A.K. & Edidin, M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of 100 A using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Leupin, O., Zaru, R., Laroche, T., Muller, S. & Valitutti, S. Exclusion of CD45 from the T-cell receptor signaling area in antigen- stimulated T lymphocytes. Curr. Biol. 10, 277–280 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Johnson, K.G., Bromley, S.K., Dustin, M.L. & Thomas, M.L. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc. Natl. Acad. Sci. USA 97, 10138–10143 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Montixi, C. et al. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 17, 5334–5348 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Leitenberg, D., Boutin, Y., Lu, D.D. & Bottomly, K. Biochemical association of CD45 with the T cell receptor complex: regulation by CD45 isoform and during T cell activation. Immunity 10, 701–711 (1999).

    CAS  Article  Google Scholar 

  29. 29

    van Oers, N.S., Killeen, N. & Weiss, A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J. Exp. Med. 183, 1053–1062 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Gold, M.R. et al. Activation and serine phosphorylation of the p56lck protein tyrosine kinase in response to antigen receptor cross-linking in B lymphocytes. J. Immunol. 153, 2369–2380 (1994).

    CAS  PubMed  Google Scholar 

  31. 31

    Chan, A.C. et al. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 14, 2499–2508 (1995).

    CAS  Article  Google Scholar 

  32. 32

    Isakov, N. et al. ZAP-70 binding specificity to T cell receptor tyrosine-based activation motifs: the tandem SH2 domains of ZAP-70 bind distinct tyrosine-based activation motifs with varying affinity. J. Exp. Med. 181, 375–380 (1995).

    CAS  Article  Google Scholar 

  33. 33

    Mege, D. et al. Mutation of tyrosines 492/493 in the kinase domain of ZAP-70 affects multiple T-cell receptor signaling pathways. J. Biol. Chem. 271, 32644–32652 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Holdorf, A.D., Lee, K.H., Burack, W.R., Allen, P.M. & Shaw, A.S. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nature Immunol. 3, 259–264 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Monks, C.R., Kupfer, H., Tamir, I., Barlow, A. & Kupfer, A. Selective modulation of protein kinase C-θ during T-cell activation. Nature 385, 83–86 (1997).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Marrack, A. Weiss and G. Koretzky for helpful comments and T. Potter for critical reading of the manuscript. Supported in part by grants from the NIH (to A. K.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abraham Kupfer.

Ethics declarations

Competing interests

A. K. is cofounder and co-owner of Intelligent-Imaging Innovations, Inc.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Freiberg, B., Kupfer, H., Maslanik, W. et al. Staging and resetting T cell activation in SMACs. Nat Immunol 3, 911–917 (2002). https://doi.org/10.1038/ni836

Download citation

Further reading