Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early TCRα expression generates TCRαγ complexes that signal the DN-to-DP transition and impair development

Abstract

Clonotypic T cell receptor (TCR) genes undergo ordered rearrangement and expression in the thymus with the result that TCRα and TCRγ proteins are not expressed in the same cell at the same time. Such “TCRα/γ exclusion” is a feature of normal thymocyte differentiation, but it is abrogated in TCR-transgenic mice, which prematurely express transgenic TCRα proteins in early double-negative (DN) thymocytes. We report here that early expression of TCRα proteins results in the formation of TCRαγ complexes that efficiently signal the differentiation of DN into double-positive thymocytes independently of pre-TCR and TCRβ expression. Thus, abrogation of TCRα/γ exclusion by early TCRα expression results in the formation of isotypically mixed TCRαγ complexes whose in vivo signals circumvent TCRβ selection and redirect thymocyte development along an aberrant developmental pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of TCRα transgenes results in the generation of TCRβ DP cells.
Figure 2: Identification of the signaling complex responsible for the generation of TCRβ DP cells in TCRα-transgenic mice.
Figure 3: Biochemical characterization of TCRαγ complexes.
Figure 4: In vivo reconstruction of a TCRαγ complex in RAG−/− mice that signals the generation of DP thymocytes.
Figure 5: Expression of TCRαγ complexes in developing DN thymocytes does not impair TCRγδ development.

Similar content being viewed by others

References

  1. Passoni, L. et al. Intrathymic δ selection events in γδ cell development. Immunity 7, 83–95 (1997).

    Article  CAS  Google Scholar 

  2. Godfrey, D.I., Kennedy, J., Mombaerts, P., Tonegawa, S. & Zlotnik, A. Onset of TCR-β gene rearrangement and role of TCR-β expression during CD3CD4CD8 thymocyte differentiation. J. Immunol. 152, 4783–4792 (1994).

    CAS  PubMed  Google Scholar 

  3. Petrie, H.T., Livak, F., Burtrum, D. & Mazel, S. T cell receptor gene recombination patterns and mechanisms: cell death, rescue, and T cell production. J. Exp. Med. 182, 121–127 (1995).

    Article  CAS  Google Scholar 

  4. Wilson, A., de Villartay, J. P. & MacDonald, H. R. T cell receptor δ gene rearrangement and T early α (TEA) expression in immature αβ lineage thymocytes: implications for αβ/γδ lineage commitment. Immunity 4, 37–45 (1996).

    Article  CAS  Google Scholar 

  5. Garman, R.D., Doherty, P.J. & Raulet, D.H. Diversity, rearrangement, and expression of murine T cell γ genes. Cell 45, 733–742 (1986).

    Article  CAS  Google Scholar 

  6. Ishida, I. et al. T-cell receptor γ δ and γ transgenic mice suggest a role of a γ gene silencer in the generation of αβ T cells. Proc. Natl. Acad. Sci. USA 87, 3067–3071 (1990).

    Article  CAS  Google Scholar 

  7. Kang, J. et al. T cell receptor γ gene regulatory sequences prevent the function of a novel TCRγ/pTα pre-T cell receptor. Immunity 8, 713–721 (1998).

    Article  CAS  Google Scholar 

  8. Terrence, K., Pavlovich, C.P., Matechak, E.O. & Fowlkes, B.J. Premature expression of T cell receptor (TCR)αβ suppresses TCRγδ gene rearrangement but permits development of γδ lineage T cells. J. Exp. Med. 192, 537–548 (2000).

    Article  CAS  Google Scholar 

  9. Bruno, L., Fehling, H.J. & von Boehmer, H. The αβ T cell receptor can replace the γδ receptor in the development of γδ lineage cells. Immunity 5, 343–352 (1996).

    Article  CAS  Google Scholar 

  10. Hochstenbach, F. & Brenner, M.B. T-cell receptor δ-chain can substitute for α to form a βδ heterodimer. Nature 340, 562–565 (1989).

    Article  CAS  Google Scholar 

  11. Samelson, L.E. & Schwartz, R.H. Characterization of the antigen-specific T cell receptor from a pigeon cytochrome c-specific T cell hybrid. Immunol. Rev. 81, 131–144 (1984).

    Article  CAS  Google Scholar 

  12. Greaves, D.R., Wilson, F.D., Lang, G. & Kioussis, D. Human CD2 3′-flanking sequences confer high-level, T cell-specific, position-independent gene expression in transgenic mice. Cell 56, 979–986 (1989).

    Article  CAS  Google Scholar 

  13. Jameson, S.C. et al. The T cell receptor Vα11 gene family. Analysis of allelic sequence polymorphism and demonstration of Jα region-dependent recognition by allele-specific antibodies. J. Immunol. 147, 3185–3193 (1991).

    CAS  PubMed  Google Scholar 

  14. Fehling, H.J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    Article  CAS  Google Scholar 

  15. Takahama, Y., Shores, E.W. & Singer, A. Negative selection of precursor thymocytes before their differentiation into CD4+CD8+ cells. Science 258, 653–656 (1992).

    Article  CAS  Google Scholar 

  16. Lacorazza, H.D., Tucek-Szabo, C., Vasovic, L.V., Remus, K. & Nikolich-Zugich, J. Premature TCRαβ expression and signaling in early thymocytes impair thymocyte expansion and partially block their development. J. Immunol. 166, 3184–3193 (2001).

    Article  CAS  Google Scholar 

  17. Kearse, K.P., Roberts, J.L. & Singer, A. TCRα-CD3δɛ association is the initial step in αβ dimer formation in murine T cells and is limiting in immature CD4+ CD8+ thymocytes. Immunity 2, 391–399 (1995).

    Article  CAS  Google Scholar 

  18. Manolios, N., Bonifacino, J.S. & Klausner, R.D. Transmembrane helical interactions and the assembly of the T cell receptor complex. Science 249, 274–277 (1990).

    Article  CAS  Google Scholar 

  19. Cosson, P., Lankford, S.P., Bonifacino, J.S. & Klausner, R.D. Membrane protein association by potential intramembrane charge pairs. Nature 351, 414–416 (1991).

    Article  CAS  Google Scholar 

  20. Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  21. Fehling, H.J. & von Boehmer, H. Early αβ T cell development in the thymus of normal and genetically altered mice. Curr. Opin. Immunol. 9, 263–275 (1997).

    Article  CAS  Google Scholar 

  22. Gounari, F. et al. Somatic activation of β-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nature Immunol. 2, 863–869 (2001).

    Article  CAS  Google Scholar 

  23. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes α and β block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  Google Scholar 

  24. DeJarnette, J.B. et al. Specific requirement for CD3ɛ in T cell development. Proc. Natl. Acad. Sci. USA 95, 14909–14914 (1998).

    Article  CAS  Google Scholar 

  25. Itohara, S. et al. T cell receptor δ gene mutant mice: independent generation of αβ T cells and programmed rearrangements of γδ TCR genes. Cell 72, 337–348 (1993).

    Article  CAS  Google Scholar 

  26. Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3ɛ gene. EMBO J. 14, 4641–4653 (1995).

    Article  CAS  Google Scholar 

  27. Kang, J., Coles, M., Cado, D. & Raulet, D.H. The developmental fate of T cells is critically influenced by TCRγδ expression. Immunity 8, 427–438 (1998).

    Article  CAS  Google Scholar 

  28. Malissen, M., Pereira, P., Gerber, D.J., Malissen, B. & DiSanto, J.P. The common cytokine receptor γ chain controls survival of γ/δ T cells. J. Exp. Med. 186, 1277–1285 (1997).

    Article  CAS  Google Scholar 

  29. Pereira, P., Gerber, D., Huang, S.Y. & Tonegawa, S. Ontogenic development and tissue distribution of Vγ1-expressing γ/δ T lymphocytes in normal mice. J. Exp. Med. 182, 1921–1930 (1995).

    Article  CAS  Google Scholar 

  30. Raulet, D.H. The structure, function, and molecular genetics of the γ/δ T cell receptor. Annu. Rev. Immunol. 7, 175–207 (1989).

    Article  CAS  Google Scholar 

  31. Hayday, A.C. γδ cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

    Article  CAS  Google Scholar 

  32. Brabb, T., Rubicz, R., Mannikko, V. & Goverman, J. Separately expressed T cell receptor α and β chain transgenes exert opposite effects on T cell differentiation and neoplastic transformation. Eur J. Immunol. 27, 3039–3048 (1997).

    Article  CAS  Google Scholar 

  33. Fritsch, M., Andersson, A., Petersson, K. & Ivars, F. A TCR α chain transgene induces maturation of CD4CD8 αβ+ T cells from γδ T cell precursors. Eur. J. Immunol. 28, 828–837 (1998).

    Article  CAS  Google Scholar 

  34. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  35. Love, P.E. et al. Differential effects of ζ and η transgenes on early α/β T cell development. J. Exp. Med. 179, 1485–1494 (1994).

    Article  CAS  Google Scholar 

  36. Shores, E.W. et al. Role of TCR ζ chain in T cell development and selection. Science 266, 1047–1050 (1994).

    Article  CAS  Google Scholar 

  37. Brinster, R.L., Chen, H.Y., Trumbauer, M.E., Yagle, M.K. & Palmiter, R.D. Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs. Proc. Natl. Acad. Sci. USA 82, 4438–4442 (1985).

    Article  CAS  Google Scholar 

  38. Kubo, R.T., Born, W., Kappler, J.W., Marrack, P. & Pigeon, M. Characterization of a monoclonal antibody which detects all murine αβ T cell receptors. J. Immunol. 142, 2736–2742 (1989).

    CAS  PubMed  Google Scholar 

  39. Becker, M.L. et al. Expression of a hybrid immunoglobulin-T cell receptor protein in transgenic mice. Cell 58, 911–921 (1989).

    Article  CAS  Google Scholar 

  40. Leo, O., Foo, M., Sachs, D.H., Samelson, L.E. & Bluestone, J.A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc. Natl. Acad. Sci. USA 84, 1374–1378 (1987).

    Article  CAS  Google Scholar 

  41. Pardoll, D.M. et al. Analysis of T-cell receptor γ chain expression in the thymus. Adv. Exp. Med. Biol. 225, 241–246 (1987).

    Article  CAS  Google Scholar 

  42. Lew, A.M. et al. Characterization of T cell receptor γ chain expression in a subset of murine thymocytes. Science 234, 1401–1405 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Granger, T. Adams and S. Sharrow for expert flow cytometry; D. Winkler for technical assistance; A. Bhandoola for helpful discussions; P. Pereira and R. O'Brien for the Vγ1Cγ4 transgenic mice; D. Raulet for the Vγ2Cγ1 transgenic mice; and R. Bosselut, R. Hodes, P. Love, P. Pereira, D. Singer and D. Wiest for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erman, B., Feigenbaum, L., Coligan, J. et al. Early TCRα expression generates TCRαγ complexes that signal the DN-to-DP transition and impair development. Nat Immunol 3, 564–569 (2002). https://doi.org/10.1038/ni800

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni800

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing