Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells

Abstract

RBP-J is a key mediator of Notch signaling that regulates cell fate determination in various lineages. To investigate the function of Notch–RBP-J in mature B cell differentiation, we generated mice that selectively lacked B cell RBP-J expression using conditional mutagenesis. Absence of RBP-J led to the loss of marginal zone B (MZB) cells with a concomitant increase in follicular B cells; in contrast, B1 cells in the peritoneal cavity were unaffected. Lack of RBP-J caused no defects in B cells maintenance, survival, plasma cell differentiation or activation. It is therefore likely that Notch–RBP-J signaling regulates the lineage commitment of mature B cells into follicular versus MZB cells. In addition, in mice with RBP-J–deficient B cells, had no obvious changes in immunoglobulin production in response to Ficoll, lipopolysaccharide or chicken gammaglobulin. In contrast, these mice exhibited increased mortality rates after blood-borne bacterial infection, which indicates that MZB cells play pivotal roles in the clearance of these bacteria.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of mice with a B cell–specific RBP-J deficiency.
Figure 2: Defective MZB cells in (RBP-Jf/f × Cre)F1 mice.
Figure 3: Characterization of transitional B cells in the spleens of RBP-J conditional-knockout mice.
Figure 4: Thymocytes and B1 cells from RBP-J conditional-knockout mice.
Figure 5: The loss of MZB cells in the absence of RBP-J is unlikely to be caused by defects in the maintenance of MZB cells.
Figure 6: Humoral immune responses in the RBP-J conditional-knockout mice.
Figure 7: Absence of RBP-J does not affect LPS-induced proliferation and BCR-mediated signaling.
Figure 8: RBP-J conditional-knockout mice are susceptible to blood-borne S. aureus infection.

Similar content being viewed by others

References

  1. Artavanis, T. S., Matsuno, K. & Fortini, M. E. Notch signaling. Science 268, 225–232 (1995).

    Article  Google Scholar 

  2. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  Google Scholar 

  3. Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell 93, 649–660 (1998).

    Article  CAS  Google Scholar 

  4. Tamura, K. et al. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-Jκ/Su(H). Curr. Biol. 5, 1416–1423 (1995).

    Article  CAS  Google Scholar 

  5. Kato, H. et al. Functional conservation of mouse Notch receptor family members. FEBS Lett. 395, 221–224 (1996).

    Article  CAS  Google Scholar 

  6. Kurooka, H., Kuroda, K. & Honjo, T. Roles of the ankyrin repeats and C-terminal region of the mouse notch1 intracellular region. Nucleic Acids Res. 26, 5448–5455 (1998).

    Article  CAS  Google Scholar 

  7. de la Pompa, J. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148 (1997).

    CAS  PubMed  Google Scholar 

  8. Kuroda, K. et al. Δ-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J. Biol. Chem. 274, 72138–7244 (1999).

    Article  Google Scholar 

  9. Ohtsuka, T. et al. Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation. EMBO J. 18, 2196–2207 (1999).

    Article  CAS  Google Scholar 

  10. Karanu, F. N. et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med. 192, 1365–1372 (2000).

    Article  CAS  Google Scholar 

  11. Li, L. et al. The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8, 43–55 (1998).

    Article  CAS  Google Scholar 

  12. Schroeder, T. & Just, U. Notch signalling via RBP-J promotes myeloid differentiation. EMBO J. 19, 2558–2568 (2000).

    Article  CAS  Google Scholar 

  13. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  Google Scholar 

  14. Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  Google Scholar 

  15. Hua, H. et al. Inducible gene knockout of transcription factor RBP-J reveals its essential role in T versus B lineage decision. Int. Immunol. (in the press, 2002).

  16. Morimura, T. et al. Cell cycle arrest and apoptosis induced by Notch1 in B cells. J. Biol. Chem. 275, 36523–36531 (2000).

    Article  CAS  Google Scholar 

  17. Strobl, L. J. et al. Activated Notch1 modulates gene expression in B cells similarly to Epstein-Barr viral nuclear antigen 2. J. Virol. 74, 1727–1735 (2000).

    Article  CAS  Google Scholar 

  18. Morimura, T., Miyatani, S., Kitamura, D. & Goitsuka, R. Notch signaling suppresses IgH gene expression in chicken B cells: implication in spatially restricted expression of Serrate2/Notch1 in the bursa of Fabricius. J. Immunol. 166, 3277–3283 (2001).

    Article  CAS  Google Scholar 

  19. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  Google Scholar 

  20. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    Article  CAS  Google Scholar 

  21. Makowska, A., Faizunnessa, N. N., Anderson, P., Midtvedt, T. & Cardell, S. CD1 high B cells: a population of mixed origin. Eur. J. Immunol. 29, 3285–3294 (1999).

    Article  CAS  Google Scholar 

  22. Martin, F. & Kearney, J. F. Positive selection from newly formed to marginal zone B cells depends on the rate of clonal production, CD19, and btk. Immunity 12, 39–49 (2000).

    Article  CAS  Google Scholar 

  23. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nature Immunol. 1, 31–36 (2001).

    Article  Google Scholar 

  24. Cariappa, A. et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity 5, 603–615 (2001).

    Article  Google Scholar 

  25. Fukui, Y. et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412, 826–831 (2001).

    Article  CAS  Google Scholar 

  26. Girkontaite, I. et al. Lsc is required for marginal zone B cells, regulation of lymphocyte motility and immune responses. Nature Immunol. 9, 855–862 (2001).

    Article  Google Scholar 

  27. Oka, C. et al. Disruption of the mouse RBP-J κ gene results in early embryonic death. Development 121, 3291–3301 (1995).

    CAS  PubMed  Google Scholar 

  28. Rickert, R. C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  Google Scholar 

  29. Betz, U. A., Vosshenrich, C. A., Rajewsky, K. & Muller, W. Bypass of lethality with mosaic mice generated by Cre-loxP-mediated recombination. Curr. Biol. 6, 1307–1316 (1996).

    Article  CAS  Google Scholar 

  30. Roark, J. H. et al. CD1. 1 expression by mouse antigen-presenting cells and marginal zone B cells. J. Immunol. 160, 3121–3127 (1998).

    CAS  PubMed  Google Scholar 

  31. Won, W. J., Masuda. K., Kearney, J. F. CD9 is a novel marker that dicriminates between marginal zone and follicular B cells. FASEB J. 14, 1191 (2000).

    Google Scholar 

  32. Radkov, S. A. et al. Epstein-Barr virus EBNA3C represses Cp, the major promoter for EBNA expression, but has no effect on the promoter of the cell gene CD21. J. Virol. 71, 8552–8562 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Morelli, A. E. et al. Recombinant adenovirus induces maturation of dendritic cells via an NF-κB-dependent pathway. J. Virol. 74, 9617–9628 (2000).

    Article  CAS  Google Scholar 

  34. Macpherson, A. J. et al. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 288, 2222–2226 (2001).

    Article  Google Scholar 

  35. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  Google Scholar 

  36. Oliver, A. M., Martin, F., Gartland, G. L., Carter, R. H. & Kearney, J. F. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur. J. Immunol. 27, 2366–2374 (1997).

    Article  CAS  Google Scholar 

  37. Bang, A. G., Bailey, A. M. & Posakony, J. W. Hairless promotes stable commitment to the sensory organ precursor cell fate by negatively regulating the activity of the Notch signaling pathway. Dev. Biol. 172, 479–494 (1995).

    Article  CAS  Google Scholar 

  38. Cariappa, A., Liou, H. C., Horwitz, B. H. & Pillai, S. Nuclear factor κB is required for the development of marginal zone B lymphocytes. J. Exp. Med. 192, 1175–1182 (2000).

    Article  CAS  Google Scholar 

  39. Rickert, R. C., Rajewsky, K. & Roes, J. B Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  CAS  Google Scholar 

  40. Sato, S., Steeber, D. A., Jansen, P. J. & Tedder, T. F. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. J. Immunol. 158, 4662–4669 (1997).

    CAS  PubMed  Google Scholar 

  41. Weih, D., Yilmaz, Z. & Weih, F. Essential role of rel-B in germinal center and marginal zone formation and proper expression of homing chemokines. J. Immunol. 167, 1909–1919 (2001).

    Article  CAS  Google Scholar 

  42. Wang, J. H. et al. Aiolos regulates B cell activation and maturation to effector state. Immunity 9, 543–553 (1998).

    Article  CAS  Google Scholar 

  43. Dunn, W. D. K., Isaacson, P. G. & Spencer, J. Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J. Exp. Med. 182, 559–566 (1995).

    Article  Google Scholar 

  44. Martin, F. & Kearney, J. F. B1 cells: similarities and differences with other B cell subsets. Curr. Opin. Immunol. 13, 195–201 (2001).

    Article  CAS  Google Scholar 

  45. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  Google Scholar 

  46. Nakane, A., Okamoto, M., Asano, M., Kohanawa, M. & Minagawa, T. Endogenous γ interferon, tumor necrosis factor, and interleukin-6 in Staphylococcus aureus infection in mice. Infect. Immun. 63, 1165–1172 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. deVos, T. & Dick, T. A. A rapid method to determine the isotype and specificity of coproantibodies in mice infected with Trichinella or fed cholera toxin. J. Immunol. Meth. 141, 285–8 (1991).

    Article  CAS  Google Scholar 

  48. Kanegae, Y. et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23, 3816–3821 (1995).

    Article  CAS  Google Scholar 

  49. Tun, T. et al. Recognition sequence of a highly conserved DNA binding protein RBP-J κ. Nucleic Acids Res. 22, 965–971 (1994).

    Article  CAS  Google Scholar 

  50. Zimber, S. U. et al. Epstein-Barr virus nuclear antigen 2 exerts its transactivating function through interaction with recombination signal binding protein RBP-Jκ, the homologue of Drosophila Suppressor of Hairless. EMBO J. 13, 4973–4982 (1994).

    Article  Google Scholar 

  51. Sakai, T. et al. Loss of immunostaining of the RBP-J κ transcription factor upon F9 cell differentiation induced by retinoic acid. J. Biochem. (Tokyo) 118, 621–628 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Rajewsky for the CD19-cre and MX-cre mice; Y. Kanegae and I. Saito (Institute of Medical Science, University of Tokyo) for the Ad-lacZ recombinant adenovirus; K. Ikuta and S. Fagarasan for helpful comments and critical reading of the manuscript; and T. Taniuchi, M. Inoue, Y. Doi, Y. Tabuchi and T. Toyoshima for technical assistance. Supported by a Center for Excellence grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tasuku Honjo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanigaki, K., Han, H., Yamamoto, N. et al. Notch–RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol 3, 443–450 (2002). https://doi.org/10.1038/ni793

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni793

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing