Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct and opposite diversifying activities of terminal transferase splice variants

Abstract

The short splice variant of mouse terminal deoxynucleotidyl transferase (TdTS) catalyzes the addition of nontemplated nucleotides (N addition) at the coding joins of B cell and T cell antigen receptor genes. However, the activity and function of the long isoform of TdT (TdTL) have not been determined. We show here, in vitro and in vivo, that TdTL is a 3′→5′ exonuclease that catalyzes the deletion of nucleotides at coding joins. These findings suggest that the two TdT isoforms may act in concert to preserve the integrity of the variable region of antigen receptors while generating diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TdTL transcripts and protein are expressed in bone marrow pro-B and pre-B cells.
Figure 2: TdTL is a 3′→5′ exonuclease.
Figure 3: TdTS and TdTL modify a wide range of DNA substrates and alanine substitutions at carboxylate residues, markedly reduce the activity of TdTL.
Figure 4: TdTL deletes nucleotides from coding ends but not from signal ends in vivo.
Figure 5: Exonuclease core motifs are conserved in the amino acid sequences of murine and bovine TdTL.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hozumi, N. & Tonegawa, S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc. Natl. Acad. Sci. USA 73, 3628–3632 (1976).

    Article  CAS  Google Scholar 

  2. Lewis, M. S. The mechanism of V(D)J joining: Lessons from molecular, immunological, and comparative analyses. Adv. Immunol. 56, 27–150 (1994).

    Article  CAS  Google Scholar 

  3. Fugmann, S. D. et al. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Ann. Rev. Immunol. 18, 497–527 (2000).

    Article  Google Scholar 

  4. Oettinger, M. A. V(D)J recombination: on the cutting edge. Curr. Opin. Cell Biol. 11, 325–329 (1999).

    Article  CAS  Google Scholar 

  5. Arstilla, P. T. et al. A direct estimate of the human αβ T cell receptor diversity. Science 286, 958–961 (1999).

    Article  Google Scholar 

  6. Cabaniols, J. P. et al. Most αβ T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J. Exp. Med. 194, 1385–1390 (2001).

    Article  CAS  Google Scholar 

  7. Komori, T., Okada, A., Stewart, V. & Alt. F. W. Lack of N regions in antigen receptor variable region genes of TdT-deficient lymphocytes. Science 261, 1171–1175 (1993).

    Article  CAS  Google Scholar 

  8. Gilfillan, S., Dierich, A., Lemeur, M., Benoist, C. & Mathis, D. Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science 261, 1175–1178 (1993).

    Article  CAS  Google Scholar 

  9. Doyen, N. et al. Differential splicing in mouse thymus generates two forms of terminal deoxynucleotidyl transferase. Nucleic Acids Res. 21, 1187–1191 (1993).

    Article  CAS  Google Scholar 

  10. Koiwai, O. et al. Isolation and characterization of bovine and mouse terminal deoxynucleotidyl transferase cDNAs expressible in mammalian cells. Nucleic Acids Res. 14, 5777–5792 (1986).

    Article  CAS  Google Scholar 

  11. Farrar, Y. J., Evans, R. B., Beach, C. M. & Coleman, M. S. Interactions of photoactive DNAs with terminal deoxynucleotidyl transferase: identification of peptides in the DNA binding domain. Biochemistry 30, 3075–3082 (1991).

    Article  CAS  Google Scholar 

  12. Yang, B., Gathy, K. N. & Coleman, M. S. Mutational analysis of residues in the nucleotide binding domain of human terminal deoxynucleotidyl transferase. J. Biol. Chem. 269, 11859–11868 (1994).

    CAS  PubMed  Google Scholar 

  13. Benedict, C. L. & Kearney, J. F. Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. Immunity 5, 607–617 (1999).

    Article  Google Scholar 

  14. Bentolila, L. A. et al. The two isoforms of mouse terminal deoxynucleotidyl transferase differ in both the ability to add N regions and subcellular localization. EMBO J. 14, 4221–4229 (1995).

    Article  CAS  Google Scholar 

  15. Feeney, A. J. Lack of N regions in fetal and neonatal mouse immunoglobulin V-D-J junctional sequences. J. Exp. Med. 172, 1377–1390 (1990).

    Article  CAS  Google Scholar 

  16. Lafaille, J., DeCloux, A., Bonneville, M, Takagaki, Y. & Tonegawa, S. Junctional sequences of T cell receptor γδ genes: implications for γδ T cell lineages and for a novel intermediate of V-(D)-J joining. Cell 59, 859–870 (1989).

    Article  CAS  Google Scholar 

  17. McVay, L. D., Carding, S. R., Bottomly, K. & Hayday, A. C. Regulated expression and structure of T cell receptor γ/δ transcripts in human thymic ontogeny. EMBO J. 10, 83–91 (1991).

    Article  CAS  Google Scholar 

  18. Schwager, J., Burckert, N., Courtet, M. & Du Pasquier, L. The ontogeny of diversification at the immunoglobulin heavy chain locus in Xenopus. EMBO J. 10, 2461–2470 (1991).

    Article  CAS  Google Scholar 

  19. Carlsson, L., Overmo, C. & Holmberg, D. Developmentally controlled selection of antibody genes: characterization of individual VH7183 genes and evidence for stage-specific somatic diversification. Eur. J. Immunol. 22, 71–78 (1992).

    Article  CAS  Google Scholar 

  20. Medina, C. A. & Teale, J. M. Restricted κ chain expression in early ontogeny: biased utilization of Vκ exons and preferential Vκ-Jκ recombinations. J. Exp. Med. 177, 1317–1330 (1993).

    Article  CAS  Google Scholar 

  21. Rothenberg, E. & Triglia, D. Clonal proliferation unlinked to terminal deoxynucleotidyl transferase synthesis in thymocytes of young mice. J. Immunol. 130, 1627–1633 (1983).

    CAS  PubMed  Google Scholar 

  22. Benedict, C. L., Gilfillan, S. & Kearney, J. F. The long isoform of terminal deoxynucleotidyl transferase enters the nucleus and, rather than catalyzing nontemplated nucleotide addition, modulates the catalytic activity of the short isoform. J. Exp. Med. 193, 89–99 (2001).

    Article  CAS  Google Scholar 

  23. Melchers, F. et al. Positive and negative selection events during B lymphopoiesis. Curr. Opin. Immunol. 7, 214–227 (1995).

    Article  CAS  Google Scholar 

  24. Grawunder, U. et al. Down-regulation of RAG1 and RAG2 gene expression in pre-B cells after functional immunoglobulin heavy chain rearrangement. Immunity 3, 601–608 (1995).

    Article  CAS  Google Scholar 

  25. Mazur, D. J. & Perrino, F. W. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′→5′ exonucleases. J. Biol. Chem. 274, 19655–19660 (1999).

    Article  CAS  Google Scholar 

  26. Schlissel, M. S. Structure of nonhairpin coding-end DNA breaks in cells undergoing V(D)J recombination. Mol. Cell Biol. 18, 2029–2037 (1998).

    Article  CAS  Google Scholar 

  27. Livák, F. L. & Schatz, D. G. Identification of V(D)J recombination coding end intermediates in normal thymocytes. J. Mol. Biol. 267, 1–9 (1997).

    Article  Google Scholar 

  28. Roth, D. B., Zhu, C. & Gellert, M. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. USA 90, 10788–10972 (1993).

    Article  CAS  Google Scholar 

  29. Schlissel, M. S., Constantinescu, A., Morrows, T., Baxter, M. & Peng, A. Double-strand signal sequence breaks in V(D)J recombination are blunt, 5′-phosphorylated, RAG-dependent, and cell-cycle regulated. Genes Dev. 7, 2520–2532 (1993).

    Article  CAS  Google Scholar 

  30. Hoss, M. et al. A human DNA editing enzyme homologous to the Escherichia coli Dna/Q/MutD protein. EMBO J. 18, 3868–3875 (1999).

    Article  CAS  Google Scholar 

  31. Bernad, A., Blanco, L., Lazaro, J. M., Martin, G. & Salas, M. A conserved 3′→5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59, 219–228 (1989).

    Article  CAS  Google Scholar 

  32. Reha-Krantz, L. J. et al. DNA polymerization in the absence of exonucleolytic proofreading: In vivo and in vitro studies. Proc. Natl. Acad. Sci. USA 88, 2417–2421 (1991).

    Article  CAS  Google Scholar 

  33. Derbyshire, V., Grindley, N. D. & Joyce, C. M. The 3′→5′ exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction. EMBO J. 1, 17–24 (1991).

    Article  Google Scholar 

  34. Reha-Krantz, L. J. & Nonay, R. L. Genetic and biochemical studies of bactriophage T4 DNA polymerase 3′→5′-exonuclease activity. J. Biol. Chem. 268, 27100–27108 (1983).

    Google Scholar 

  35. Wang, J., Yu, P., Lin, T. C., Konigsberg, W. H. & Steitz, T. A. Crystal structures of an NH2-terminal fragment of T4 DNA polymerase and its complexes with single-stranded DNA and with divalent metal ions. Biochemistry 35, 8110–8119 (1996).

    Article  CAS  Google Scholar 

  36. Purugganan, M. M., Shah, S., Kearney, J. F. & Roth, D. B. Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase. Nucleic Acids Res. 29, 1638–1646 (2001).

    Article  CAS  Google Scholar 

  37. Takahara, K. et al. Alternative splicing of bovine terminal deoxynucleotidyl transferase cDNA. Biosci. Biotech. Biochem. 58, 786–787 (1994).

    Article  CAS  Google Scholar 

  38. Boulé, J. B., Rougeon, F. & Panicolaou, C. Comparison of the two murine deoxynucleotidyl transferase. J. Biol. Chem. 275, 28984–28988 (2000).

    Article  Google Scholar 

  39. Fang, W. et al. Frequent aberrant immunoglobulin gene rearrangements in pro-B cells revealed by a bcl-x L transgene. Immunity 4, 291–299 (1996).

    Article  CAS  Google Scholar 

  40. Victor, K. D., Vu, K. & Feeney, A. J. Limited junctional diversity in κ light chains. J. Immnunol. 152, 3467 (1994).

  41. Whitcomb, E. A. & Brodeur, P. H. Rearrangement and selection in the developing Vκ repertoire of the mouse: an analysis of the usage of two Vκ gene. J. Immunol. 160, 4904–4913 (1998).

    CAS  PubMed  Google Scholar 

  42. Levine, M. TdT effects during κ light chain recombination and influence on BCR selection. Thesis, Yale Univ. (2000).

Download references

Acknowledgements

We thank S. Gilfillan and D. Mathis for the TdTL and TdTS cDNA clones; D. J. Mazure and F. W. Perrino for hTREX2; M. Oettinger for full-length RAG-1 and RAG-2; L. Gartland for FACS; X. Y. Liu for technical assistance; M. A. Anderson, D. S. Nelson, P. D. Burrows for helpful discussions; and A. Brookshire for preparing this manuscript. Supported by NIH grants AI 523133, AI 07051, AI36420 and the Howard Hughes Medical Institute (D. B. R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Kearney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thai, TH., Purugganan, M., Roth, D. et al. Distinct and opposite diversifying activities of terminal transferase splice variants. Nat Immunol 3, 457–462 (2002). https://doi.org/10.1038/ni788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing