Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation

Abstract

CD1 proteins present various glycolipid antigens to T cells, but the cellular mechanisms that control which particular glycolipids generate T cell responses are not understood. We show here that T cell recognition of glucose monomycolate antigens with long (C80) alkyl chains involves the delivery of CD1b proteins and antigens to late endosomes in a process that takes several hours. In contrast, analogs of the same antigen with shorter (C32) alkyl chains are rapidly, but inefficiently, presented by cell surface CD1b proteins. Dendritic cells (DCs) preferentially present long-chain glycolipids, which results, in part, from their rapid internalization and selective delivery of antigens to endosomal compartments. Nonprofessional antigen-presenting cells, however, preferentially present short-chain glycolipids because of their lack of prominent endosomal presentation pathways. Because long alkyl chain length distinguishes certain microbial glycolipids from common mammalian glycolipids, these findings suggest that DCs use a specialized endosomal-loading pathway to promote preferential recognition of glycolipids with a more intrinsically foreign structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD1b-mediated T cell activation by GMM antigens of varying alkyl chain length.
Figure 2: DCs internalized GMM antigens and selectively delivered C80 GMM to late endosomal and lysosomal compartments.
Figure 3: B lymphoblastoid cells and DCs differed in the efficiency of uptake and presentation of GMM alkyl chain length analogs.
Figure 4: Presentation of GMMs with short alkyl chains was more rapid, but less stable, than presentation of GMMs with longer alkyl chains.
Figure 5: Presentation of GMM chain length analogs by cells expressing CD1b proteins that lack endosomal targeting sequences.
Figure 6: Transformed thymocytes more efficiently presented C32 GMM.

Similar content being viewed by others

References

  1. Calabi, F. & Milstein, C. The molecular biology of CD1. Semin. Immunol. 12, 503–509 (2000).

    Article  CAS  Google Scholar 

  2. Porcelli, S. A. & Modlin, R. L. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu. Rev. Immunol. 17, 297–329 (1999).

    Article  CAS  Google Scholar 

  3. Zeng, Z. et al. Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277, 339–345 (1997).

    Article  CAS  Google Scholar 

  4. Burdin, N. et al. Structural requirements for antigen presentation by mouse CD1. Proc. Natl. Acad. Sci. USA 97, 10156–10161 (2000).

    Article  CAS  Google Scholar 

  5. Niazi, K. et al. The A′ and F′ pockets of human CD1b are both required for optimal presentation of lipid antigens to T cells. J. Immunol. 166, 2562–2570 (2001).

    Article  CAS  Google Scholar 

  6. Ernst, W. A. et al. Molecular interaction of CD1b with lipoglycan antigens. Immunity 8, 331–340 (1998).

    Article  CAS  Google Scholar 

  7. Joyce, S. et al. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science 279, 1541–1544 (1998).

    Article  CAS  Google Scholar 

  8. Naidenko, O. et al. Binding and antigen presentation of ceramide-containing glycolipids by soluble mound and human CD1d molecules. J. Exp. Med. 190, 1069–1079 (1999).

    Article  CAS  Google Scholar 

  9. Grant, E. P. et al. Molecular recognition of lipid antigens by T cell receptors. J. Exp. Med. 189, 195–205 (1999).

    Article  CAS  Google Scholar 

  10. Moody, D. B., Besra, G. S., Wilson, I. A. & Porcelli, S. A. The molecular basis of CD1-mediated presentation of lipid antigens. Immunol. Rev. 172, 285–296 (1999).

    Article  CAS  Google Scholar 

  11. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  12. Bendelac, A. CD1: presenting unusual antigens to unusual T lymphocytes. Science 269, 185–186 (1995).

    Article  CAS  Google Scholar 

  13. Sieling, P. A. et al. CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity. J. Immunol. 162, 1851–1858 (1999).

    CAS  PubMed  Google Scholar 

  14. Porcelli, S., Morita, C. T. & Brenner, M. B. CD1b restricts the response of human CD48 T lymphoyctes to a microbial antigen. Nature 360, 593–597 (1992).

    Article  CAS  Google Scholar 

  15. Moody, D. B. et al. CD1c-mediated T cell recognition of mycobacterial glycolipids in M. tuberculosis infection. Nature 404, 884–888 (2000).

    Article  CAS  Google Scholar 

  16. Gumperz, J. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  Google Scholar 

  17. Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29, 1667–1675 (1999).

    Article  CAS  Google Scholar 

  18. Beckman, E. M. et al. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372, 691–694 (1994).

    Article  CAS  Google Scholar 

  19. Sieling, P. A. et al. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227–230 (1995).

    Article  CAS  Google Scholar 

  20. Moody, D. B. et al. Structural requirements for glycolipid antigen recognition by CD1b- restricted T cells. Science 278, 283–286 (1997).

    Article  CAS  Google Scholar 

  21. Moody, D. B., Reinhold, B. B., Reinhold, V. N., Besra, G. S. & Porcelli, S. A. Uptake and processing of glycosylated mycolates for presentation to CD1b-restricted T cells. Immunol. Lett. 65, 85–91 (1999).

    Article  CAS  Google Scholar 

  22. Jackman, R. M. et al. The tyrosine-containing cytoplasmic tail of CD1b is essential for its efficient presentation of bacterial lipid antigens. Immunity 8, 341–351 (1998).

    Article  CAS  Google Scholar 

  23. Sugita, M. et al. Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 273, 349–352 (1996).

    Article  CAS  Google Scholar 

  24. Prigozy, T. I. et al. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6, 187–197 (1997).

    Article  CAS  Google Scholar 

  25. Shamshiev, A. et al. The αβ T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13, 255–264 (2000).

    Article  CAS  Google Scholar 

  26. Sacchettini, J. C. & Gordon, J. I. Rat intestinal fatty acid binding protein. A model system for analyzing the forces that can bind fatty acids to proteins. J. Biol. Chem. 268, 18399–18402 (1993).

    CAS  PubMed  Google Scholar 

  27. Moody, D. B. et al. CD1b-mediated T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J. Exp. Med. 192, 965–976 (2000).

    Article  CAS  Google Scholar 

  28. Datta, A. K., Takayama, K., Nashed, M. A. & Anderson, L. An improved synthesis of trehalose 6-mono- and 6,6′-dicorynemycolates and related esters. Carb. Res. 218, 95–109 (1991).

    Article  CAS  Google Scholar 

  29. Mukherjee, S., Soe, T. T. & Maxfield, F. R. Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J. Cell Biol. 144, 1271–1284 (1999).

    Article  CAS  Google Scholar 

  30. Briken, V., Jackman, R. M., Watts, G. F., Rogers, R. A. & Porcelli, S. A. Human CD1b and CD1c isoforms survey different intracellular compartments for the presentation of microbial lipid antigens. J. Exp. Med. 192, 281–288 (2000).

    Article  CAS  Google Scholar 

  31. Lanzavecchia, A. Mechanisms of antigen uptake for presentation. Curr. Opin. Immunol. 8, 348–354 (1996).

    Article  CAS  Google Scholar 

  32. Novak, E. J. & Rabinovitch, P. S. Improved sensitivity in flow cytometric intracellular ionized calcium measurement using fluo-3/Fura Red fluorescence ratios. Cytometry 17, 135–141 (1994).

    Article  CAS  Google Scholar 

  33. Caras, I. W., Weddell, G. N., Davitz, M. A., Nussenzweig, V. & Martin, D. W. J. Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Science 238, 1280–1283 (1987).

    Article  CAS  Google Scholar 

  34. Tykocinski, M. L. et al. Signal for attachment of a phospholipid membrane anchor in decay accelerating factor. Proc. Natl. Acad. Sci. USA 85, 3555–3559 (1988).

    Article  CAS  Google Scholar 

  35. Geho, D. H. et al. Glycosyl-phosphatidylinositol reanchoring unmasks distinct antigen-presenting pathways for CD1b and CD1c. J. Immunol. 165, 1272–1277 (2000).

    Article  CAS  Google Scholar 

  36. Kirchhausen, T., Bonifacino, J. S. & Riezman, H. Linking cargo to vesicle formation: receptor tail interactions with coat proteins. Curr. Opin. Cell Biol. 9, 488–495 (1997).

    Article  CAS  Google Scholar 

  37. Martin, L. H., Calabi, F., Lefebvre, F. A., Bilsland, C. A. & Milstein, C. Structure and expression of the human thymocyte antigens CD1a, CD1b, and CD1c. Proc. Natl. Acad. Sci. USA 84, 9189–9193 (1987).

    Article  CAS  Google Scholar 

  38. Porcelli, S. A. The CD1 family: a third lineage of antigen-presenting molecules. Adv. Immunol. 59, 1–98 (1995).

    Article  CAS  Google Scholar 

  39. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    Article  CAS  Google Scholar 

  40. Coles, M. C. & Raulet, D. H. NK1. 1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol. 164, 2412–2418 (2000).

    Article  CAS  Google Scholar 

  41. Reinherz, E. L., Kung, P. C., Goldstein, G., Levey, R. H. & Schlossman, S. F. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc. Natl. Acad. Sci. USA 77, 1588–1592 (1980).

    Article  CAS  Google Scholar 

  42. Cresswell, P. Invariant chain structure and MHC class II function. Cell 84, 505–507 (1996).

    Article  CAS  Google Scholar 

  43. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  Google Scholar 

  44. Kaufmann, S. H. Immunity to intracellular microbial pathogens. Immunol. Today 16, 338–342 (1995).

    Article  CAS  Google Scholar 

  45. Lee, R. E., Brennan, P. J. & Besra, G. S. Mycobacterium tuberculosis cell envelope. Curr. Top. Microbiol. Immunol. 215, 1–27 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Gumperz, J. Hartt, M. Brenner and M. Sugita for advice and reagents; D. Olive for the 4A7 hybridoma cell line; P. Chavrier for the Rab5 antiserum; and I. Wilson and B. Segelke for molecular modeling studies of CD1 proteins. Supported by grants from the American College of Rheumatology Research and Education Foundation, the Human Frontiers Science Program, the Irene Diamond Foundation, NIAMS (ARO1988 to D. B. M.), the NIAID (AI49313, AI45889, AI48933, AI 31044 and AI 38960 to D. B. M., S. A. P. and M. L. T.), the NCI (CA74958 to M. L. T) and the Medical Research Council (49343 and G0000895 to G. S. B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Branch Moody.

Ethics declarations

Competing interests

S. Porcelli is a paid consultant of Antigenics, a publicly held biotechnology company that also supports research in his laboratory. Antigenics is a licensee of several patents related to the application of antigen presentation by CD1 and has a commercial interest in further scientific development in this area.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moody, D., Briken, V., Cheng, TY. et al. Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat Immunol 3, 435–442 (2002). https://doi.org/10.1038/ni780

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni780

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing