Human Toll-like receptor 4 recognizes host-specific LPS modifications

Abstract

Lipopolysaccharide (LPS) is the principal proinflammatory component of the Gram-negative bacterial envelope and is recognized by the Toll-like receptor 4 (TLR4)–MD-2 receptor complex. Bacteria can alter the acylation state of their LPS in response to environmental changes. One opportunistic bacterium, Pseudomonas aeruginosa, synthesizes more highly acylated (hexa-acylated) LPS structures during adaptation to the cystic fibrosis airway. Here we show that human, but not murine, TLR4–MD-2 recognizes this adaptation and transmits robust proinflammatory signals in response to hexa-acylated but not penta-acylated LPS from P. aeruginosa. Whereas responses to lipidIVA and taxol are dependent on murine MD-2, discrimination of P. aeruginosa LPS structures is mediated by an 82-amino-acid region of human TLR4 that is hypervariable across species. Thus, in contrast to mice, humans use TLR4 to recognize a molecular signature of bacterial-host adaptation to modulate the innate immune response.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structural modifications in lipid A from E. coli (EC), Rhodobacter sphaeroides (RS) and Pseudomonas aeruginosa (PA).
Figure 2: TLR4 mediates species-specific recognition of CF LPS.
Figure 3: mTLR4, in conjunction with either mMD-2 or hMD-2, mediates recognition of penta-acylated LPS.
Figure 4: A hypervariable region of the TLR4 extracellular domain evolved across species.
Figure 5: The hypervariable region of the murine TLR4 middle domain is required for recognition of penta-acylated LPS.
Figure 6: MD-2 is essential in the discrimination of lipidIVA and taxol but not PA LPS.

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. 1

    Raetz, C. R. H. Bacterial lipopolysaccharides: a remarkable family of bioactive macroamphiphiles, in Escherichia coli and Salmonella (ed. Neidhardt, F. C.) 1035–1063 (ASM, Washington DC, 1996).

    Google Scholar 

  2. 2

    Beutler, B. Tlr4: central component of the sole mammalian LPS sensor. Curr. Opin. Immunol. 12, 20–26 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl Acad. Sci. USA 97, 2163–2167 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615–625 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    da Silva Correia, J., Soldau, K., Christen, U., Tobias, P. S. & Ulevitch, R. J. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex: Transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 276, 21129–21135 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll- like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Akashi, S. et al. Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4–MD-2 complex on mouse peritoneal macrophages. J. Immunol. 164, 3471–3475 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Visintin, A., Mazzoni, A., Spitzer, J. A. & Segal, D. M. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc. Natl Acad. Sci. USA 98, 12156–12161 (2001).

    CAS  Article  Google Scholar 

  13. 13

    Ulevitch, R. J. & Tobias, P. S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13, 437–457 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Guo, L. et al. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276, 250–253 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Ernst, R. K. et al. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286, 1561–1565 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Guo, L. et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189–198 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Gunn, J. S. et al. PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol. Microbiol. 27, 1171–1182 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Gunn, J. S., Ryan, S. S., Van Velkinburgh, J. C., Ernst, R. K. & Miller, S. I. Genetic and functional analysis of a PmrA-PmrB–regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect. Immun. 68, 6139–6146 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Burns, J. L. et al. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J. Infect. Dis. 183, 444–452 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Davis, P. B., Drumm, M. & Konstan, M. W. Cystic fibrosis. Am. J. Respir. Crit. Care Med. 154, 1229–1256 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Pilewski, J. M. & Frizzell, R. A. Role of CFTR in airway disease. Physiol. Rev. 79, S215–S255 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Somerville, J. E. Jr, Cassiano, L., Bainbridge, B., Cunningham, M. D. & Darveau, R. P. A novel Escherichia coli lipid A mutant that produces an antiinflammatory lipopolysaccharide. J. Clin. Invest. 97, 359–365 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Walker, K. & Croteau, R. Taxol biosynthesis: molecular cloning of a benzoyl-CoA:taxane 2α-O-benzoyltransferase cDNA from taxus and functional expression in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 13591–13596 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Kawasaki, K. et al. Mouse toll-like receptor 4–MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J. Biol. Chem. 275, 2251–4. (2000).

    CAS  Article  Google Scholar 

  25. 25

    Akashi, S. et al. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int. Immunol. 13, 1595–1599 (2001).

    CAS  Article  Google Scholar 

  26. 26

    Hirschfeld, M., Ma, Y., Weis, J. H., Vogel, S. N. & Weis, J. J. Cutting edge: Repurification of lipopolysaccharide eliminates signaling through both human and murine Toll-like receptor 2. J. Immunol. 165, 618–622 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Arbour, N. C. et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25, 187–191 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Bals, R., Weiner, D. J. & Wilson, J. M. The innate immune system in cystic fibrosis lung disease. J. Clin. Invest. 103, 303–307 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Guggino, W. B. Cystic fibrosis and the salt controversy. Cell 96, 607–610 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Guggino, W. B. Cystic fibrosis salt/fluid controversy: in the thick of it. Nat. Med. 7, 888–889 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Grubb, B. R. & Boucher, R. C. Pathophysiology of gene-targeted mouse models for cystic fibrosis. Physiol. Rev. 79, S193–S214 (1999).

    CAS  Article  Google Scholar 

  33. 33

    O'Brien, A. D. et al. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J. Immunol. 124, 20–24 (1980).

    CAS  PubMed  Google Scholar 

  34. 34

    Supajatura, V. et al. Protective roles of mast cells against enterobacterial infection are mediated by toll-like receptor 4. J. Immunol. 167, 2250–2256 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Hajjar, A. M. et al. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol. 166, 15–19 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Rozas, J. & Rozas, R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. BioInformatics 15, 174–175 (1999).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank D. T. Golenbock for lipidIVA and RS lipid A; R. Medzhitov for the hTLR4 construct; K. Miyake for the MD-2 constructs; A. Perchellet for help with preparing the hCD14 construct; and E. Sokurenko for suggestions. Supported by grants from the CF Foundation (R565-Wilson) and from the NIH (HL69503-Hajjar, HL65898-Wilson and AI47938-Miller).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Christopher B. Wilson or Samuel I. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hajjar, A., Ernst, R., Tsai, J. et al. Human Toll-like receptor 4 recognizes host-specific LPS modifications. Nat Immunol 3, 354–359 (2002). https://doi.org/10.1038/ni777

Download citation

Further reading