Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of antigen receptor affinity in T cell–independent antibody responses in vivo

Abstract

To examine how B cell receptor affinity affects clonal selection in thymus-independent type 2 (TI-2) immune responses, we produced mice with antibodies that showed a 40-fold difference in affinity for the hapten (4-hydroxy-3-nitrophenyl)acetyl (NP). The difference in the responses of high- and low-affinity B cells to NP-Ficoll was only twofold. However, in competition experiments only the high-affinity B cells responded to antigen. CD19 deficiency increased the affinity threshold of TI-2 responses, whereas Lyn deficiency enhanced clonal expansion but abrogated B cell terminal differentiation. Thus, in TI-2 immune responses, large differences in affinity produce only small differences in the intrinsic ability of B cells to respond to antigen, and selection for high-affinity clones is due to clonal competition during the earliest stages of the response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B1-8hi and B1-8lo mice.
Figure 2: B cell development in the bone marrow and spleens of B1-8hi and B1-8lo mice.
Figure 3: Response to NP-Ficoll immunization.
Figure 4: Igλ+ cells that respond to NP-Ficoll in the spleen are plasmacytes.
Figure 5: NP-specific IgM and IgG responses in NP-Ficoll immunized mice.
Figure 6: Apoptosis and cell cycle analysis in NP-Ficoll immunized mice.
Figure 7: CD19 and Lyn in TI-2 immune responses.
Figure 8: Competition experiment for TI-2 immune responses.

Similar content being viewed by others

References

  1. Mond, J. J., Lees, A. & Snapper, C. M. T cell-independent antigens type 2. Annu. Rev. Immunol. 13, 655–692 (1995).

    Article  CAS  Google Scholar 

  2. Murray, C. J. & Lopez, A. D. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 349, 1498–1504 (1997).

    Article  CAS  Google Scholar 

  3. Jerne, N. K. A study of avidity based on rabbit skin responses to diptheria toxin antitoxin mixtures. Acta Pathol. Microbiol. Scand. Suppl. 87, 1–183 (1951).

    CAS  PubMed  Google Scholar 

  4. Eisen, H. N. & Siskind, G. W. Variations in affinities of antibodies during the immune response. Biochemistry 3, 996–1008 (1964).

    Article  CAS  Google Scholar 

  5. Siskind, G. W. & Benacerraf, B. Cell selection by antigen in the immune response. Adv. Immunol. 10, 1–50 (1969).

    Article  CAS  Google Scholar 

  6. Baker, P. J., Prescott, B., Stashak, P. W. & Amsbaugh, D. F. Characterization of the antibody response to type 3 pneumococcal polysaccharide at the cellular level. 3. Studies on the average avidity of the antibody produced by specific plaque-forming cells. J. Immunol. 107, 719–724 (1971).

    CAS  PubMed  Google Scholar 

  7. Klaus, G. G. & Humphrey, J. H. The immunological properties of haptens coupled to thymus-independent carrier molecules. I. The characteristics of the immune response to dinitrophenyl-lysine-substituted pneumococcal polysaccharide (SIII) and levan. Eur. J. Immunol. 4, 370–377 (1974).

    Article  CAS  Google Scholar 

  8. Liu, Y. J., Oldfield, S. & MacLennan, I. C. Memory B cells in T cell-dependent antibody responses colonize the splenic marginal zones. Eur. J. Immunol. 18, 355–362 (1988).

    Article  CAS  Google Scholar 

  9. Garcia de Vinuesa, C., O'Leary, P., Sze, D. M., Toellner, K. M. & MacLennan, I. C. T-independent type 2 antigens induce B cell proliferation in multiple splenic sites, but exponential growth is confined to extrafollicular foci. Eur. J. Immunol. 29, 1314–1323 (1999).

    Article  CAS  Google Scholar 

  10. Jack, R. S., Imanishi-Kari, T. & Rajewsky, K. Idiotypic analysis of the response of C57BL/6 mice to the (4-hydroxy-3-nitrophenyl)acetyl group. Eur. J. Immunol. 7, 559–565 (1977).

    Article  CAS  Google Scholar 

  11. Reth, M., Hammerling, G. J. & Rajewsky, K. Analysis of the repertoire of anti-NP antibodies in C57BL/6 mice by cell fusion. I. Characterization of antibody families in the primary and hyperimmune response. Eur. J. Immunol. 8, 393–400 (1978).

    Article  CAS  Google Scholar 

  12. Bothwell, A. L. et al. Heavy chain variable region contribution to the NPβ family of antibodies: somatic mutation evident in a γ2a variable region. Cell 24, 625–637 (1981).

    Article  CAS  Google Scholar 

  13. Allen, D., Simon, T., Sablitzky, F., Rajewsky, K. & Cumano, A. Antibody engineering for the analysis of affinity maturation of an anti-hapten response. EMBO J. 7, 1995–2001 (1988).

    Article  CAS  Google Scholar 

  14. Reth, M., Gehrmann, P., Petrac, E. & Wiese, P. A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. Nature 322, 840–842 (1986).

    Article  CAS  Google Scholar 

  15. Kleinfield, R. et al. Recombination between an expressed immunoglobulin heavy-chain gene and a germline variable gene segment in a Ly 1+ B-cell lymphoma. Nature 322, 843–846 (1986).

    Article  CAS  Google Scholar 

  16. Sonoda, E. et al. B cell development under the condition of allelic inclusion. Immunity 6, 225–233 (1997).

    Article  CAS  Google Scholar 

  17. Martin, F., Oliver, A. M. & Kearney, J. F. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14, 617–629 (2001).

    Article  CAS  Google Scholar 

  18. Cascalho, M., Ma, A., Lee, S., Masat, L. & Wabl, M. A quasi-monoclonal mouse. Science 272, 1649–1652 (1996).

    Article  CAS  Google Scholar 

  19. Garcia de Vinuesa, C. G. et al. Germinal centers without T cells. J. Exp. Med. 191, 485–494 (2000).

    Article  Google Scholar 

  20. Han, S., Zheng, B., Schatz, D. G., Spanopoulou, E. & Kelsoe, G. Neoteny in lymphocytes: Rag1 and Rag2 expression in germinal center B cells. Science 274, 2094–2097 (1996).

    Article  CAS  Google Scholar 

  21. Smith, K. G., Nossal, G. J. & Tarlinton, D. M. FAS is highly expressed in the germinal center but is not required for regulation of the B-cell response to antigen. Proc. Natl Acad. Sci. USA 92, 11628–11632 (1995).

    Article  CAS  Google Scholar 

  22. Watanabe, D., Suda, T. & Nagata, S. Expression of Fas in B cells of the mouse germinal center and Fas-dependent killing of activated B cells. Int. Immunol. 7, 1949–1956 (1995).

    Article  CAS  Google Scholar 

  23. Sze, D. M., Toellner, K. M., Garcia de Vinuesa, C., Taylor, D. R. & MacLennan, I. C. Intrinsic constraint on plasmablast growth and extrinsic limits of plasma cell survival. J. Exp. Med. 192, 813–821 (2000).

    Article  CAS  Google Scholar 

  24. Carter, R. H. & Fearon, D. T. CD19: lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256, 105–107 (1992).

    Article  CAS  Google Scholar 

  25. Fehr, T. et al. Antiviral protection and germinal center formation, but impaired B cell memory in the absence of CD19. J. Exp. Med. 188, 145–155 (1998).

    Article  CAS  Google Scholar 

  26. Chan, V. W., Lowell, C. A. & DeFranco, A. L. Defective negative regulation of antigen receptor signaling in Lyn-deficient B lymphocytes. Curr. Biol. 8, 545–553 (1998).

    Article  CAS  Google Scholar 

  27. DeFranco, A. L., Chan, V. W. & Lowell, C. A. Positive and negative roles of the tyrosine kinase Lyn in B cell function. Semin. Immunol. 10, 299–307 (1998).

    Article  CAS  Google Scholar 

  28. Chan, V. W., Meng, F., Soriano, P., DeFranco, A. L. & Lowell, C. A. Characterization of the B lymphocyte populations in Lyn-deficient mice and the role of Lyn in signal initiation and down-regulation. Immunity 7, 69–81 (1997).

    Article  CAS  Google Scholar 

  29. Hibbs, M. L. et al. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83, 301–311 (1995).

    Article  CAS  Google Scholar 

  30. Smith, K. G., Tarlinton, D. M., Doody, G. M., Hibbs, M. L. & Fearon, D. T. Inhibition of the B cell by CD22: a requirement for Lyn. J. Exp. Med. 187, 807–811 (1998).

    Article  CAS  Google Scholar 

  31. Otipoby, K. L. et al. CD22 regulates thymus-independent responses and the lifespan of B cells. Nature 384, 634–637 (1996).

    Article  CAS  Google Scholar 

  32. Sato, S. et al. CD22 is both a positive and negative regulator of B lymphocyte antigen receptor signal transduction: altered signaling in CD22-deficient mice. Immunity 5, 551–562 (1996).

    Article  CAS  Google Scholar 

  33. Engel, P. et al. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. Immunity 3, 39–50 (1995).

    Article  CAS  Google Scholar 

  34. Rickert, R. C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  CAS  Google Scholar 

  35. Sato, S., Steeber, D. A. & Tedder, T. F. The CD19 signal transduction molecule is a response regulator of B-lymphocyte differentiation. Proc. Natl Acad. Sci. USA 92, 11558–11562 (1995).

    Article  CAS  Google Scholar 

  36. Guinamard, R., Okigaki, M., Schlessinger, J. & Ravetch, J. V. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nature Immunol. 1, 31–36 (2000).

    Article  CAS  Google Scholar 

  37. Kato, J. et al. Affinity maturation in Lyn kinase-deficient mice with defective germinal center formation. J. Immunol. 160, 4788–4795 (1998).

    CAS  PubMed  Google Scholar 

  38. Jacob, J. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. II. A common clonal origin for periarteriolar lymphoid sheath-associated foci and germinal centers. J. Exp. Med. 176, 679–687 (1992).

    Article  CAS  Google Scholar 

  39. Kroese, F. G., Wubbena, A. S., Seijen, H. G. & Nieuwenhuis, P. Germinal centers develop oligoclonally. Eur. J. Immunol. 17, 1069–1072 (1987).

    Article  CAS  Google Scholar 

  40. Liu, Y. J., Zhang, J., Lane, P. J., Chan, E. Y. & MacLennan, I. C. Sites of specific B cell activation in primary and secondary responses to T cell-dependent and T cell-independent antigens. Eur. J. Immunol. 21, 2951–2962 (1991).

    Article  CAS  Google Scholar 

  41. Dintzis, H. M., Dintzis, R. Z. & Vogelstein, B. Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl Acad. Sci. USA 73, 3671–3675 (1976).

    Article  CAS  Google Scholar 

  42. Bachmann, M. F. et al. The influence of antigen organization on B cell responsiveness. Science 262, 1448–1451 (1993).

    Article  CAS  Google Scholar 

  43. Batista, F. D. & Neuberger, M. S. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8, 751–759 (1998).

    Article  CAS  Google Scholar 

  44. Kouskoff, V. et al. Antigens varying in affinity for the B cell receptor induce differential B lymphocyte responses. J. Exp. Med. 188, 1453–1464 (1998).

    Article  CAS  Google Scholar 

  45. Fischer, M. B. et al. Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280, 582–585 (1998).

    Article  CAS  Google Scholar 

  46. Foote, J. & Milstein, C. Kinetic maturation of an immune response. Nature 352, 530–532 (1991).

    Article  CAS  Google Scholar 

  47. Foote, J. & Eisen, H. N. Kinetic and affinity limits on antibodies produced during immune responses. Proc. Natl Acad. Sci. USA 92, 1254–1256 (1995).

    Article  CAS  Google Scholar 

  48. Roost, H. P. et al. Early high-affinity neutralizing anti-viral IgG responses without further overall improvements of affinity. Proc. Natl Acad. Sci. USA 92, 1257–1261 (1995).

    Article  CAS  Google Scholar 

  49. Batista, F. D. & Neuberger, M. S. B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J. 19, 513–520 (2000).

    Article  CAS  Google Scholar 

  50. Humphrey, J. H. Tolerogenic or immunogenic activity of hapten-conjugated polysaccharides correlated with cellular localization. Eur. J. Immunol. 11, 212–220 (1981).

    Article  CAS  Google Scholar 

  51. Neuberger, M. S. Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells. EMBO J. 2, 1373–1378 (1983).

    Article  CAS  Google Scholar 

  52. Pelanda, R. et al. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity 7, 765–775 (1997).

    Article  CAS  Google Scholar 

  53. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  Google Scholar 

  54. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl Acad. Sci. USA 93, 5860–5865 (1996).

    Article  CAS  Google Scholar 

  55. Pircher, H. et al. T cell tolerance to Mlsa encoded antigens in T cell receptor Vβ1 chain transgenic mice. EMBO J. 8, 719–727 (1989).

    Article  CAS  Google Scholar 

  56. Roederer, M. Conjugation of monoclonal antibodies. http://www.drmr.com/abcon/ (1999).

Download references

Acknowledgements

We thank E. Besmer and members of the Nussenzweig lab for helpful comments on the manuscript, Nai-Ying Zheng for histology and Frank Isdell and Michelle Genova for FACS. We also thank C. Lowell, M. Neuberger, R. Pelanda, R. Rickert and T. Tedder for constructs, reagents and mice. Supported by NIH MSTP grant GM07739 (T. Y. S.), HHMI and grants from the Leukemia Society and NIH to M.C.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel C. Nussenzweig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Web Figure 1. CD22 in TI-2 immune response.

Flow cytometric analysis of immunized (d5) (a) CD22-/- B1-8hi and (b) CD22-/- B1-8lo mice and unimmunized controls (d0). The first row shows B220/Igλ staining with λ + B cells indicated within the gate. Plots in the second row are B220+-gated and show GC cells within the gate (Fas+GL7+ cells). Plasmacyte differentiation is shown in the third row by B220/Syndecan-1 staining. All plots are lymphocyte-gated with additional gating as specified; numbers indicate percentages of cells within the designated gate. (GIF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, TA., Roederer, M. & Nussenzweig, M. Role of antigen receptor affinity in T cell–independent antibody responses in vivo. Nat Immunol 3, 399–406 (2002). https://doi.org/10.1038/ni776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni776

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing