Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease

Abstract

Arthritis in the K/BxN mouse model results from pathogenic immunoglobulins (Igs) that recognize the ubiquitous cytoplasmic enzyme glucose-6-phosphate isomerase (GPI). But how is a joint-specific disease of autoimmune and inflammatory nature induced by systemic self-reactivity? No unusual amounts or sequence, splice or modification variants of GPI expression were found in joints. Instead, immunohistological examination revealed the accumulation of extracellular GPI on the lining of the normal articular cavity, most visibly along the cartilage surface. In arthritic mice, these GPI deposits were amplified and localized with IgG and C3 complement. Similar deposits were found in human arthritic joints. We propose that GPI–anti-GPI complexes on articular surfaces initiate an inflammatory cascade via the alternative complement pathway, which is unbridled because the cartilage surface lacks the usual cellular inhibitors. This may constitute a generic scenario of arthritogenesis, in which extra-articular proteins coat the cartilage or joint extracellular matrix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: No joint-specific form of GPI.
Figure 2: No overexpression of GPI in joints.
Figure 3: Presence of GPI on joint surfaces.
Figure 4: Circulating GPI or GPI–anti-GPI immune complexes.
Figure 5: GPI deposits on a human RA pannus.

Similar content being viewed by others

References

  1. Lanchbury, J. S. & Pitzalis, C. Cellular immune mechanisms in rheumatoid arthritis and other inflammatory arthritides. Curr. Biol. 5, 918–924 (1993).

    CAS  Google Scholar 

  2. Kouskoff, V. et al. Organ-specific disease provoked by systemic autoreactivity. Cell 87, 811–822 (1996).

    Article  CAS  Google Scholar 

  3. Korganow, A.-S. et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10, 451–461 (1999).

    Article  CAS  Google Scholar 

  4. Matsumoto, I., Staub, A., Benoist, C. & Mathis, D. Arthritis provoked by linked T and B cell recognition a glycolytic enzyme. Science 286, 1732–1735 (1999).

    Article  CAS  Google Scholar 

  5. Basu, D., Horvath, S., Matsumoto, I., Fremont, D. H. & Allen, P. M. Molecular basis for recognition of an arthritic peptide and a foreign epitope on distinct MHC molecules by a single TCR. J. Immunol. 164, 5788–5796 (2000).

    Article  CAS  Google Scholar 

  6. Maccioni, M. et al. Arthritogenic monoclonal antibodies from K/BxN mice. J. Exp. Med. (in the press, 2002).

  7. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  Google Scholar 

  8. West, J. D., Flockhart, J. H., Peters, J. & Ball, S. T. Death of mouse embryos that lack a functional gene for glucose phosphate isomerase. Genet. Res. 56, 223–236 (1990).

    Article  CAS  Google Scholar 

  9. Frohman, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene–specific oligonucleotide primer. Proc. Natl Acad. Sci. USA 85, 8998–9002 (1988).

    Article  CAS  Google Scholar 

  10. Schaller, M., Burton, D. R. & Ditzel, H. J. Autoantibodies to GPI in rheumatoid arthritis: linkage between animal model and human disease. Nature Immunol. 2, 746–753 (2001).

    Article  CAS  Google Scholar 

  11. Ishikawa, H., Smiley, J. D. & Ziff, M. Electron microscopic demonstration of immunoglobulin deposition in rheumatoid cartilage. Arthritis Rheum. 18, 563–576 (1975).

    Article  CAS  Google Scholar 

  12. Cooke, T. D., Hurd, E. R., Jasin, H. E., Bienenstock, J. & Ziff, M. Identification of immunoglobulins and complement in rheumatoid articular collagenous tissues. Arthritis Rheum. 18, 541–551 (1975).

    Article  CAS  Google Scholar 

  13. Vetto, A. A., Mannik, M., Zatarain-Rios, E. & Wener, M. H. Immune deposits in articular cartilage of patients with rheumatoid arthritis have a granular pattern not seen in osteoarthritis. Rheumatol. Int. 10, 13–19 (1990).

    Article  CAS  Google Scholar 

  14. Pangburn, M. K. in The Complement System (eds Rother, K., Till, G. O. & Hansch, G. M.) 93–115 (Springer-Verlag Berlin, Heidelberg, 1998).

    Google Scholar 

  15. Vivanco, F., Munoz, E., Vidarte, L. & Pastor, C. The covalent interaction of C3 with IgG immune complexes. Mol. Immunol. 36, 843–852 (1999).

    Article  CAS  Google Scholar 

  16. Shohet, J. M., Pemberton, P. & Carroll, M. C. Identification of a major binding site for complement C3 on the IgG1 heavy chain. J. Biol. Chem. 268, 5866–5871 (1993).

    CAS  PubMed  Google Scholar 

  17. Fries, L. F., Gaither, T. A., Hammer, C. H. & Frank, M. M. C3b covalently bound to IgG demonstrates a reduced rate of inactivation by factors H and I. J. Exp. Med. 160, 1640–1655 (1984).

    Article  CAS  Google Scholar 

  18. Jelezarova, E., Vogt, A. & Lutz, H. U. Interaction of C3b2-IgG complexes with complement proteins properdin, factor B and factor H: implications for amplification. Biochem. J. 349, 217–223 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwaeble, W. J. & Reid, K. B. M. Does properdin crosslink the cellular and the humoral immune response? Immunol. Today 20, 17–21 (1999).

    Article  CAS  Google Scholar 

  20. Fearon, D. T. Regulation by membrane sialic acid of β1H-dependent decay-dissociation of amplification C3 convertase of the alternative complement pathway. Proc. Natl Acad. Sci. USA 75, 1971–1975 (1978).

    Article  CAS  Google Scholar 

  21. Meri, S. & Pangburn, M. K. Discrimination between activators and nonactivators of the alternative pathway of complement: regulation via a sialic acid/polyanion binding site on factor H. Proc. Natl Acad. Sci. USA 87, 3982–3986 (1990).

    Article  CAS  Google Scholar 

  22. Takahashi, S. et al. Cloning and cDNA sequence analysis of nephritogenic monoclonal antibodies derived from an MRL/lpr lupus mouse. Mol. Immunol. 30, 177–182 (1993).

    Article  CAS  Google Scholar 

  23. Gonzalez, M. L. & Waxman, F. J. Glomerular deposition of immune complexes made with IgG2a monoclonal antibodies. J. Immunol. 164, 1071–1077 (2000).

    Article  CAS  Google Scholar 

  24. Watanabe, H. et al. Modulation of Renal Disease in MRL/lpr Mice Genetically Deficient in the Alternative Complement Pathway Factor B. J. Immunol. 164, 786–794 (2000).

    Article  CAS  Google Scholar 

  25. Watanabe, H. et al. Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. J. Biol. Chem. 266, 13442–13448 (1991).

    CAS  PubMed  Google Scholar 

  26. Jeffery, C. J., Bahnson, B. J., Chien, W., Ringe, D. & Petsko, G. A. Crystal structure of rabbit phosphoglucose isomerase, a glycolitic enzyme that moonlights as neuroleukin, autocrine motility factor and differentiation mediator. Biochemistry 39, 955–964 (2000).

    Article  CAS  Google Scholar 

  27. Sun, Y. J. et al. The crystal structure of a multifunctional protein: phosphoglucose isomerase/autocrine motility factor/neuroleukin. Proc. Natl Acad. Sci. USA 96, 5412–5417 (1999).

    Article  CAS  Google Scholar 

  28. Wipke, B. T., Wang, Z., Kim, J., McCarthy, T. J. & Allen, P. M. Dynamic visualization of a joint-specific autoimmune response through positron emission topography. Nature Immunol. 3, 368–374 (2002).

    Article  Google Scholar 

  29. Zvaifler, N. J. The immunopathology of joint inflammation in rheumatoid arthritis. Adv. Immunol. 265, 265–336 (1973).

    Article  Google Scholar 

  30. Jasin, H. E. Immune mediated cartilage destruction. Scand. J. Immunol. 76, 111–116 (1988).

    CAS  Google Scholar 

  31. Auffray, C. & Rougeon, F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107, 303–314 (1980).

    Article  CAS  Google Scholar 

  32. Ji, H. et al. Genetic influences on the end-stage effector phase of arthritis. J. Exp. Med. 194, 321–330 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. L. Pasquali for enlightening discussions; J. Hergueux, S. Johnson and Q. M. Pham for managing the KRN colony; C. Cahill for help with confocal microscopy; P. Gerber for ELISAs and chromatography; and D. Bowman and A. Calderone for sections. Supported by institutional funds from the INSERM, CNRS and the Centre Hospitalo-Universitaire and by grants from the Association pour la Recherche contre la Polyarthrite and the NIH (1R01 AR/AI46580-01, to D. M. and C. B), the Arthritis Foundation (I. M.), the Fondation pour la Recherche Medicale and CONICET (M. M.) and the Howard Hughes Medical Institute (D. L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diane Mathis or Christophe Benoist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, I., Maccioni, M., Lee, D. et al. How antibodies to a ubiquitous cytoplasmic enzyme may provoke joint-specific autoimmune disease. Nat Immunol 3, 360–365 (2002). https://doi.org/10.1038/ni772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing