Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective loss of gastrointestinal mast cells and impaired immunity in PI3K-deficient mice

Abstract

Mice that lack the p85α regulatory subunit of phosphatidylinositol-3 kinase (PI3K) are deficient in gastrointestinal and peritoneal mast cells but have dermal mast cells. Accordingly, these mice show impaired bacterial clearance in response to acute septic peritonitis and are highly susceptible to infection by the intestinal nematode Strongyloides venezuelensis. Systemic anaphylactic shock responses, however, are intact. We found that although reconstitution of PI3K−/− mice with bone marrow–derived mast cells (BMMCs) restored anti-bacterial immunity, only T helper type 2 (TH2)-conditioned BMMCs, not "standard" BMMCs, were able to restore anti-nematode immunity. This finding highlights the importance of the TH2 response in the control of nematode infection. Thus, PI3K likely plays an essential role in host immune responses by regulating both the development and induction of mast cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired acute bacterial clearance in PI3K−/− mice.
Figure 2: Selective loss of gastrointestinal mast cells in PI3K−/− mice.
Figure 3: IgE-dependent passive systemic anaphylaxis in PI3K−/− mice.
Figure 4: Gastrointestinal mast cells were restored in PI3K−/− mice by bone marrow transplantation.
Figure 5: Defective SCF-induced proliferation in PI3K−/− BMMCs.
Figure 6: Modest mastocytosis and delayed expulsion of adult worms in PI3K−/− mice infected with S. venezuelensis.
Figure 7: Restoration of anti-parasitic immunity in PI3K−/− mice by reconstitution with TH2-conditioned BMMCs.

Similar content being viewed by others

References

  1. Metcalfe, D. D., Baram, D. & Mekori, Y. A. Mast cells. Physiol. Rev. 77, 1033–1079 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Galli, S. J. Mast cells and basophils. Curr. Opin. Hematol. 7, 32–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Galli, S. J. & Hammel, I. Mast cell and basophil development. Curr. Opin. Hematol. 1, 33–39 (1994).

    CAS  PubMed  Google Scholar 

  4. Echtenacher, B., Mannel, D. N. & Hultner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381, 75–77 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Malaviya, R., Ikeda, T., Ross, E. & Abraham, S. N. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-α. Nature 381, 77–80 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Gurish, M. F. & Austen, K. F. The diverse roles of mast cells. J. Exp. Med. 194, 1–5 (2001).

    Article  Google Scholar 

  7. Shelburne, C. P. & Ryan, J. J. The role of Th2 cytokines in mast cell homeostasis. Immunol. Rev. 179, 82–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Lantz, C. S. & Huff, T. F. Differential responsiveness of purified mouse c-kit+ mast cells and their progenitors to IL-3 and stem cell factor. J. Immunol. 155, 4024–4029 (1995).

    CAS  PubMed  Google Scholar 

  9. Rodewald, H. R., Dessing, M., Dvorak, A. M. & Galli, S. J. Identification of a committed precursor for the mast cell lineage. Science 271, 818–822 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Galli, S. J., Zsebo, K. M. & Geissler, E. N. The kit ligand, stem cell factor. Adv. Immunol. 55, 1–96 (1994).

    CAS  PubMed  Google Scholar 

  11. Kitamura, Y., Go, S. & Hatanaka, K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 52, 447–452 (1978).

    CAS  PubMed  Google Scholar 

  12. Galli, S. J. & Kitamura, Y. Animal models of human disease. Genetically mast-cell-deficient W/Wv and Sl/Sld mice: their value for the analysis of the roles of mast cells in biological responses in vivo. Am. J. Pathol. 127, 191–198 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Finkelman, F. D. et al. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: Lessons from studies with rodent models. Annu. Rev. Immunol. 15, 505–533 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Nawa, Y. et al. Selective effector mechanisms for the expulsion of intestinal helminths. Parasite Immunol. 16, 333–338 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Reynolds, D. S. et al. Different mouse mast cell populations express various combinations of at least six distinct mast cell serine proteases. Proc. Natl Acad. Sci. USA 87, 3230–3234 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thompson-Snipes, L. et al. Interleukin 10: a novel stimulatory factor for mast cells and their progenitors. J. Exp. Med. 173, 507–510 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Else, K. J., Finkelman, F. D., Maliszewski, C. R. & Grencis, R. K. Cytokine-mediated regulation of chronic intestinal helminth infection. J. Exp. Med. 179, 347–351 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Kobayashi, T. et al. Intestinal mast cell response and mucosal defence against Strongyloides venezuelensis in interleukin-3-hyporesponsive mice. Parasite Immunol. 20, 279–284 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Abe, T. & Nawa, Y. Kinetic study of mast-cell growth factor production by lymphocytes during the course of Strongyloides ratti infection in mice. Parasitol. Res. 74, 484–488 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Urban, J. F. Jr et al. IL-13, IL-4Rα, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8, 255–264 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Khan, W. I. et al. Critical role for signal transducer and activator of transcription factor 6 in mediating intestinal muscle hypercontractility and worm expulsion in Trichinella spiralis-infected mice. Infect. Immunity 69, 838–844 (2001).

    Article  CAS  Google Scholar 

  22. Carpenter, C. L. & Cantley, L. C. Phosphoinositide kinases. Curr. Opin. Cell Biol. 8, 153–158 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Kinet, J. P. The high-affinity IgE receptor (FcɛRI): from physiology to pathology. Annu. Rev. Immunol. 17, 931–972 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Timokhina, I., Kissel, H., Stella, G. & Besmer, P. Kit signaling through PI 3-kinase and Src kinase pathways: an essential role for Rac1 and JNK activation in mast cell proliferation. EMBO J. 17, 6250–6262 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Escobedo, J. A. et al. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGFβ-receptor. Cell 65, 75–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Skolnik, E. Y. et al. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 65, 83–90 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Otsu, M. et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c–src complexes, and PI3-kinase. Cell 65, 91–104 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Terauchi, Y. et al. Increased insulin sensitivity and hypoglycemia in mice lacking the p85α subunit of phosphoinositide 3-kinase. Nature Genet. 21, 230–235 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Bochner, B. S. & Lichtenstein, L. M. Anaphylaxis. N. Engl. J. Med. 324, 1785–1790 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Humphries, D. E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400, 769–772 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Forsberg, E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Dombrowicz, D., Flamand, V., Brigman, K. K., Koller, B. H. & Kinet, J. P. Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor α chain gene. Cell 75, 969–976 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Jacoby, W. P., Cammarata, V., Findlay, S. & Pincus, S. Anaphylaxis in mast cell-deficient mice. J. Invest. Dermatol. 83, 302–304 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Takeishi, T., Martin, T. R., Katona, I. M., Finkelman, F. D. & Galli, S. J. Differences in the expression of the cardiopulmonary alterations associated with anti-immunoglobulin E-induced or active anaphylaxis in mast cell-deficient and normal mice. Mast cells are not required for the cardiopulmonary changes associated with certain fatal anaphylactic responses. J. Clin. Invest. 88, 598–608 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martin, T. R., Galli, S. J., Katona, I. M. & Drazen, J. M. Role of mast cells in anaphylaxis. Evidence for the importance of mast cells in the cardiopulmonary alterations and death induced by anti-IgE in mice. J. Clin. Invest. 83, 1375–1383 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu-Kuo, J. M., Fruman, D. A., Joyal, D. M., Cantley, L. C. & Katz, H. R. Impaired kit- but not FcɛRI-initiated mast cell activation in the absence of phosphoinositide 3-kinase p85α gene products. J. Biol. Chem. 275, 6022–6029 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Nakano, T. et al. Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice: evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. J. Exp. Med. 162, 1025–1043 (1985).

    Article  CAS  PubMed  Google Scholar 

  39. Mekori, Y. A., Oh, C. K. & Metcalfe, D. D. IL-3-dependent murine mast cells undergo apoptosis on removal of IL-3. Prevention of apoptosis by c-kit ligand. J. Immunol. 151, 3775–3784 (1993).

    CAS  PubMed  Google Scholar 

  40. Tsai, M. et al. Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell factor. Proc. Natl Acad. Sci. USA 88, 6382–6386 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Okuda, K. et al. Granulocyte-macrophage colony-stimulating factor, interleukin-3, and steel factor induce rapid tyrosine phosphorylation of p42 and p44 MAP kinase. Blood 79, 2880–2887 (1992).

    CAS  PubMed  Google Scholar 

  42. Foltz, I. N., Lee, J. C., Young, P. R. & Schrader, J. W. Hemopoietic growth factors with the exception of interleukin-4 activate the p38 mitogen-activated protein kinase pathway. J. Biol. Chem. 272, 3296–3301 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Garrington, T. P. et al. MEKK2 gene disruption causes loss of cytokine production in response to IgE and c-Kit ligand stimulation of ES cell-derived mast cells. EMBO J. 19, 5387–5395 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Lantz, C. S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Friend, D. S. et al. Mast cells that reside at different locations in the jejunum of mice infected with Trichinella spiralis exhibit sequential changes in their granule ultrastructure and chymase phenotype. J. Cell Biol. 135, 279–290 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Knight, P. A., Wright, S. H., Lawrence, C. E., Paterson, Y. Y. W. & Miller, H. R. P. Delayed expulsion of the nematode Trichinella spiralis in mice lacking the mucosal mast cell-specific granule chymase, mouse mast cell protease-1. J. Exp. Med. 192, 1849–1856 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Khan, A. I., Horii, Y., Tiuria, R., Sato, Y. & Nawa, Y. Mucosal mast cells and the expulsive mechanisms of mice against Strongyloides venezuelensis. Int. J. Parasitol. 23, 551–555 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Sato, Y. & Toma, H. Effects of spleen cells and serum on transfer of immunity to Strongyloides venezuelensis infection in hypothymic (nude) mice. Int. J. Parasitol. 20, 63–67 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Ghildyal, N., McNeil, H. P., Gurish, M. F., Austen, K. F. & Stevens, R. L. Transcriptional regulation of the mucosal mast cell-specific protease gene, MMCP-2, by interleukin 10 and interleukin 3. J. Biol. Chem. 267, 8473–8477 (1992).

    CAS  PubMed  Google Scholar 

  51. Ghildyal, N. et al. IL-10 induces transcription of the gene for mouse mast cell protease-1, a serine protease preferentially expressed in mucosal mast cells of Trichinella spiralis-infected mice. J. Immunol. 149, 2123–2129 (1992).

    CAS  PubMed  Google Scholar 

  52. Ghildyal, N., Friend, D. S., Nicodemus, C. F., Austen, K. F. & Stevens, R. L. Reversible expression of mouse mast cell protease 2 mRNA and protein in cultured mast cells exposed to IL-10. J. Immunol. 151, 3206–3214 (1993).

    CAS  PubMed  Google Scholar 

  53. Abe, T. & Nawa, Y. Reconstitution of mucosal mast cells in W/WV mice by adoptive transfer of bone marrow-derived cultured mast cells and its effects on the protective capacity to Strongyloides ratti-infection. Parasite Immunol. 9, 31–38 (1987).

    Article  CAS  PubMed  Google Scholar 

  54. Kissel, H. et al. Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J. 19, 1312–1326 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suzuki, K. et al. Role of common cytokine receptor γ chain (γc)- and Jak3-dependent signaling in the proliferation and survival of murine mast cells. Blood 96, 2172–2180 (2000).

    CAS  PubMed  Google Scholar 

  56. Godfraind, C. et al. Intraepithelial infiltration by mast cells with both connective tissue-type and mucosal-type characteristics in gut, trachea, and kidneys of IL-9 transgenic mice. J. Immunol. 160, 3989–3996 (1998).

    CAS  PubMed  Google Scholar 

  57. Finkelman, F. D. et al. Effects of interleukin 12 on immune responses and host protection in mice infected with intestinal nematode parasites. J. Exp. Med. 179, 1563-1572 (1994).

  58. Yamaguchi, M. et al. IgE enhances mouse mast cell FcɛRI expression in vitro and in vivo: Evidence for a novel amplification mechanism in IgE-dependent reactions. J. Exp. Med. 185, 663–672 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fukao, T. et al. Inducible expression of Stat4 in dendritic cells and macrophages and its critical role in innate and adaptive immune responses. J. Immunol. 166, 4446–4455 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Motouchi and K. Furuichi for animal care; S. Matsuda for valuable discussions; L. K. Clayton and J. Fujimoto for critical reading of the manuscript; and the Department of Dermatology of Keio University School of Medicine for experimental equipment. Supported by a Keio University Special Grant-in-Aid for Innovative Collaborative Research Project; a grant for the Research For The Future Program (JSPS-RFTF-97L00701) from the Japan Society for the Promotion of Science; a Grant-in-Aid for Scientific Research on Priority Areas (C) (13226112); a National Grant-in-Aid for the Establishment of a High-Tech Research Center in a Private University; a grant for the Promotion of the Advancement of Education and Research in Graduate Schools; and a Scientific Frontier Research Grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Koyasu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukao, T., Yamada, T., Tanabe, M. et al. Selective loss of gastrointestinal mast cells and impaired immunity in PI3K-deficient mice. Nat Immunol 3, 295–304 (2002). https://doi.org/10.1038/ni768

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni768

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing