Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impairment of immunological memory in the absence of MHC despite survival of memory T cells

Abstract

The mechanisms by which immunological memory is maintained after infection or vaccination are still a matter of debate. Long-term survival of memory T cells does not require major histocompatibility complex (MHC) contact. We show here that compared with memory CD4+ T cells that maintain contact with MHC class II, memory CD4+ T cells deprived of MHC class II contact show distinct functional defects upon antigen re-encounter. Thus, in contrast to their survival, maintenance of the typical quality of memory T cells crucially depends on MHC-derived signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Survival of memory CD4+ T cells in the absence of MHC.
Figure 2: Memory CD4+ T cell homeostasis in the absence of MHC.
Figure 3: Impact of previous MHC contact on in vitro function of memory T cells.
Figure 4: Impact of previous MHC contact on in vivo response of memory T cells to naïve B cells.
Figure 5: Impact of previous MHC contact on rejection of minor allografts by memory T cells.
Figure 6: Phenotypic alterations of memory CD4+ T cells in the absence of MHC.

Similar content being viewed by others

References

  1. Sprent, J. T and B memory cells. Cell 76, 315–322 (1994).

    Article  CAS  Google Scholar 

  2. Sprent, J. & Tough, D. F. Lymphocyte life-span and memory. Science 265, 1395–1400 (1994).

    Article  CAS  Google Scholar 

  3. Gray, D. Immunological memory. Annu. Rev. Immunol. 11, 49–77 (1993).

    Article  CAS  Google Scholar 

  4. Zinkernagel, R. M. et al. On immunological memory. Annu. Rev. Immunol. 14, 333–367 (1996).

    Article  CAS  Google Scholar 

  5. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  6. Kundig, T. M. et al. On T cell memory: arguments for antigen dependence. Immunol. Rev. 150, 63–90 (1996).

    Article  CAS  Google Scholar 

  7. Dutton, R. W., Bradley, L. M. & Swain, S. L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  Google Scholar 

  8. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    Article  CAS  Google Scholar 

  9. Swain, S. L., Hu, H. & Huston, G. Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383 (1999).

    Article  CAS  Google Scholar 

  10. Takeda, S., Rodewald, H. R., Arakawa, H., Bluethmann, H. & Shimizu, T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5, 217–228 (1996).

    Article  CAS  Google Scholar 

  11. Kirberg, J., Berns, A. & von Boehmer, H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med. 186, 1269–1275 (1997).

    Article  CAS  Google Scholar 

  12. Brocker, T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–1232 (1997).

    Article  CAS  Google Scholar 

  13. Ernst, B., Lee, D. S., Chang, J. M., Sprent, J. & Surh, C. D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    Article  CAS  Google Scholar 

  14. Witherden, D. et al. Tetracycline-controllable selection of CD4(+) T cells: half-life and survival signals in the absence of major histocompatibility complex class II molecules. J. Exp. Med. 191, 355–364 (2000).

    Article  CAS  Google Scholar 

  15. Labrecque, N. et al. How much TCR does a T cell need? Immunity 15, 71–82 (2001).

    Article  CAS  Google Scholar 

  16. Polic, B., Kunkel, D., Scheffold, A. & Rajewsky, K. How αβ T cells deal with induced TCR α ablation. Proc. Natl Acad. Sci. USA 98, 8744–8749 (2001).

    Article  CAS  Google Scholar 

  17. Clarke, S. R. & Rudensky, A. Y. Survival and homeostatic proliferation of naive peripheral CD4+ T cells in the absence of self peptide:MHC complexes. J. Immunol. 165, 2458–2464 (2000).

    Article  CAS  Google Scholar 

  18. Dorfman, J. R., Stefanova, I., Yasutomo, K. & Germain, R. N. CD4+ T cell survival is not directly linked to self-MHC-induced TCR signaling. Nature Immunol. 1, 329–335 (2000).

    Article  CAS  Google Scholar 

  19. Marrack, P. et al. Homeostasis of αβ TCR+ T cells. Nature Immunol. 1, 107–111 (2000).

    Article  CAS  Google Scholar 

  20. Sprent, J. & Surh, C. D. Generation and maintenance of memory T cells. Curr. Opin. Immunol. 13, 248–254 (2001).

    Article  CAS  Google Scholar 

  21. Selin, L. K. et al. Attrition of T cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11, 733–742 (1999).

    Article  CAS  Google Scholar 

  22. Garcia, S., DiSanto, J. & Stockinger, B. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11, 163–171 (1999).

    Article  CAS  Google Scholar 

  23. Barthlott, T. & Stockinger, B. Lineage fate alteration of thymocytes developing in an MHC environment containing MHC/peptide ligands with antagonist properties. Eur. J. Immunol. 31, 3595–3601 (2001).

    Article  CAS  Google Scholar 

  24. DiSanto, J. P., Muller, W., Guy-Grand, D., Fischer, A. & Rajewsky, K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor γ chain. Proc. Natl Acad. Sci. USA 92, 377–381 (1995).

    Article  CAS  Google Scholar 

  25. Kieper, W. C. & Jameson, S. C. Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc. Natl Acad. Sci. USA 96, 13306–13311 (1999).

    Article  CAS  Google Scholar 

  26. Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    Article  CAS  Google Scholar 

  27. Croft, M., Bradley, L. M. & Swain, S. L. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J. Immunol. 152, 2675–2685 (1994).

    CAS  Google Scholar 

  28. Oxenius, A., Zinkernagel, R. M. & Hengartner, H. CD4+ T-cell induction and effector functions: a comparison of immunity against soluble antigens and viral infections. Adv. Immunol. 70, 313–367 (1998).

    Article  CAS  Google Scholar 

  29. Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

    Article  CAS  Google Scholar 

  30. Lanzavecchia, A., Lezzi, G. & Viola, A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96, 1–4 (1999).

    Article  CAS  Google Scholar 

  31. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  32. Kim, C. H. et al. Rules of chemokine receptor association with T cell polarization in vivo. J. Clin. Invest. 108, 1331–1339 (2001).

    Article  CAS  Google Scholar 

  33. Masopust, D., Vezys, V., Marzo, A. L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  Google Scholar 

  34. Reinhardt, R. L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M. K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  Google Scholar 

  35. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nature Immunol. 1, 47–53 (2000).

    Article  CAS  Google Scholar 

  36. Grayson, J. M., Murali-Krishna, K., Altman, J. D. & Ahmed, R. Gene expression in antigen-specific CD8+ T cells during viral infection. J. Immunol. 166, 795–799 (2001).

    Article  CAS  Google Scholar 

  37. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  Google Scholar 

  38. Fitzpatrick, D. R. et al. Distinct methylation of the interferon γ(IFN-γ) and interleukin 3 (IL-3) genes in newly activated primary CD8+ T lymphocytes: regional IFN-gamma promoter demethylation and mRNA expression are heritable in CD44(high)CD8+ T cells. J. Exp. Med. 188, 103–117 (1998).

    Article  CAS  Google Scholar 

  39. Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med. 190, 1439–1450 (1999).

    Article  CAS  Google Scholar 

  40. Slifka, M. K. & Whitton, J. L. Functional avidity maturation of CD8(+) T cells without selection of higher affinity TCR. Nature Immunol. 2, 711–717 (2001).

    Article  CAS  Google Scholar 

  41. Tarakhovsky, A. et al. A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 269, 535–537 (1995).

    Article  CAS  Google Scholar 

  42. Pena-Rossi, C. et al. Negative regulation of CD4 lineage development and responses by CD5. J. Immunol. 163, 6494–6501 (1999).

    CAS  PubMed  Google Scholar 

  43. Wong, P., Barton, G. M., Forbush, K. A. & Rudensky, A. Y. Dynamic tuning of T cell reactivity by self-peptide-major histocompatibility complex ligands. J. Exp. Med. 193, 1179–1187 (2001).

    Article  CAS  Google Scholar 

  44. Smith, K. et al. Sensory adaptation in naive peripheral CD4 T cells. J. Exp. Med. 194, 1253–1261 (2001).

    Article  CAS  Google Scholar 

  45. Tanchot, C., Lemonnier, F. A., Perarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).

    Article  CAS  Google Scholar 

  46. Zal, T., Volkmann, A. & Stockinger, B. Mechanisms of tolerance induction in major histocompatibility complex class II-restricted T cells specific for a blood-borne self-antigen. J. Exp. Med. 180, 2089–2099 (1994).

    Article  CAS  Google Scholar 

  47. Zelenika, D. et al. Rejection of H-Y disparate skin grafts by monospecific CD4+ Th1 and Th2 cells: no requirement for CD8+ T cells or B cells. J. Immunol. 161, 1868–1874 (1998).

    CAS  PubMed  Google Scholar 

  48. Hogquist, K. A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  Google Scholar 

  49. Scott, D. et al. Dendritic cells permit identification of genes encoding MHC class II-restricted epitopes of transplantation antigens. Immunity 12, 711–720 (2000).

    Article  CAS  Google Scholar 

  50. Ahmed, S. A., Gogal, R. M. J. & Walsh, J. E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J. Immunol. Meth. 170, 211–224 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Zamoyska and D. Kioussis for critical comments on the manuscript; C. Atkins for cell sorting; and T. Norton and K. Williams for animal husbandry. Supported by the Wellcome Trust (G. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitta Stockinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassiotis, G., Garcia, S., Simpson, E. et al. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat Immunol 3, 244–250 (2002). https://doi.org/10.1038/ni766

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni766

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing