Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP

Abstract

Little is known about the processing of putative human autoantigens and why tolerance is established to some T cell epitopes but not others. Here we show that a principal human HLA-DR2–restricted epitope—amino acids 85–99 of myelin basic protein, MBP(85–99)—contains a processing site for the cysteine protease asparagine endopeptidase (AEP). Presentation of this epitope by human antigen-presenting cells is inversely proportional to the amount of cellular AEP activity: inhibition of AEP in living cells greatly enhances presentation of the MBP(85–99) epitope, whereas overexpression of AEP diminishes presentation. These results indicate that central tolerance to this encephalitogenic MBP epitope may not be established because destructive processing limits its display in the thymus. Consistent with this hypothesis, AEP is expressed abundantly in thymic antigen-presenting cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AEP cleaves after asparagine94 in MBP.
Figure 2: The minimal epitope for the Ob. 1A12 TCR spans residues 87–96 (PVVHFFKNIV).
Figure 3: Inhibition of AEP activity enhances presentation of the MBP(85–99) epitope.
Figure 4: Overexpression of AEP in Mel Juso cell lines inhibits presentation of MBP.
Figure 5: CD11c+ MHC class II+ thymic DCs express AEP.

Similar content being viewed by others

References

  1. Martin, R., McFarland, H. F. & McFarlin, D. E. Immunological aspects of demyelinating diseases. Annu. Rev. Immunol. 10, 153–187 (1992).

    Article  CAS  Google Scholar 

  2. Steinman, L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299–302 (1996).

    Article  CAS  Google Scholar 

  3. Anderton, S., Burkhart, C., Metzler, B. & Wraith, D. Mechanisms of central and peripheral T-cell tolerance: lessons from experimental models of multiple sclerosis. Immunol. Rev. 169, 123–137 (1999).

    Article  CAS  Google Scholar 

  4. Ota, K. et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346, 183–187 (1990).

    Article  CAS  Google Scholar 

  5. Martin, R. et al. Fine specificity and HLA restriction of myelin basic protein-specific cytotoxic T cell lines from multiple sclerosis patients and healthy individuals. J. Immunol. 145, 540–548 (1990).

    CAS  Google Scholar 

  6. Jaraquemada, D. et al. HLA-DR2a is the dominant restriction molecule for the cytotoxic T cell response to myelin basic protein in DR2Dw2 individuals. J. Immunol. 145, 2880–2885 (1990).

    CAS  PubMed  Google Scholar 

  7. Wucherpfennig, K. W. et al. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J. Exp. Med. 179, 279–290 (1994).

    Article  CAS  Google Scholar 

  8. Vergelli, M. et al. T cell response to myelin basic protein in the context of the multiple sclerosis-associated HLA-DR15 haplotype: peptide binding, immunodominance and effector functions of T cells. J. Neuroimmunol. 77, 195–203 (1997).

    Article  CAS  Google Scholar 

  9. Valli, A. et al. Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J. Clin. Invest. 91, 616–628 (1993).

    Article  CAS  Google Scholar 

  10. Wraith, D. C., Smilek, D. E., Mitchell, D. J., Steinman, L. & McDevitt, H. O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell 59, 247–255 (1989).

    Article  CAS  Google Scholar 

  11. Krogsgaard, M. et al. Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2–MBP 85–99 complex. J. Exp. Med. 191, 1395–1412 (2000).

    Article  CAS  Google Scholar 

  12. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nature Med. 6, 1167–1175 (2000).

    Article  CAS  Google Scholar 

  13. Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nature Med. 6, 1176–1182 (2000).

    Article  CAS  Google Scholar 

  14. Madsen, L. S. et al. A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nature Genet. 23, 343–347 (1999).

    Article  CAS  Google Scholar 

  15. Pribyl, T. M. et al. The human myelin basic protein gene is included within a 179-kilobase transcription unit: expression in the immune and central nervous systems. Proc. Natl Acad. Sci. USA 90, 10695–10699 (1993).

    Article  CAS  Google Scholar 

  16. Mathisen, P. M., Pease, S., Garvey, J., Hood, L. & Readhead, C. Identification of an embryonic isoform of myelin basic protein that is expressed widely in the mouse embryo. Proc. Natl Acad. Sci. USA 90, 10125–10129 (1993).

    Article  CAS  Google Scholar 

  17. Heath, V. L., Moore, N. C., Parnell, S. M. & Mason, D. W. Intrathymic expression of genes involved in organ specific autoimmune disease. J. Autoimmun. 11, 309–318 (1998).

    Article  CAS  Google Scholar 

  18. Chen, J. M. et al. Cloning, isolation, and characterization of mammalian legumain, an asparaginyl endopeptidase. J. Biol. Chem. 272, 8090–8098 (1997).

    Article  CAS  Google Scholar 

  19. Manoury, B. et al. An asparaginyl endopeptidase processes a microbial antigen for class II MHC presentation. Nature 396, 695–699 (1998).

    Article  CAS  Google Scholar 

  20. Antoniou, A. N., Blackwood, S. L., Mazzeo, D & Watts, C. Control of antigen presentation by a single protease cleavage site. Immunity 12, 391–398 (2000).

    Article  CAS  Google Scholar 

  21. Tulp, A., Verwoerd, D., Dobberstein, B., Ploegh, H. L. & Pieters, J. Isolation and characterization of the intracellular MHC class II compartment. Nature 369, 120–126 (1994).

    Article  CAS  Google Scholar 

  22. Knight, A. M., Lucocq, J. M., Prescott, A. R., Ponnambalam, S. & Watts, C. Antigen endocytosis and presentation mediated by human membrane IgG1 in the absence of the Igα)/Igβ dimer. EMBO J. 16, 3842–3850 (1997).

    Article  CAS  Google Scholar 

  23. Ferrari, G., Knight, A. M., Watts, C. & Pieters, J. Distinct intracellular compartments involved in invariant chain degradation and antigenic peptide loading of major histocompatibility complex (MHC) class II molecules. J. Cell Biol. 139, 1433–1446 (1997).

    Article  CAS  Google Scholar 

  24. Volkmann, A., Zal, T. & Stockinger, B. Antigen-presenting cells in the thymus that can negatively select MHC class II-restricted T cells recognizing a circulating self antigen. J. Immunol. 158, 693–706 (1997).

    CAS  Google Scholar 

  25. Moudgil, K. D. & Sercarz, E. E. The self-directed T cell repertoire: its creation and activation. Rev. Immunogenet. 2, 26–37 (2000).

    CAS  PubMed  Google Scholar 

  26. Harrington, C. J. et al. Differential tolerance is induced in T cells recognizing distinct epitopes of myelin basic protein. Immunity 8, 571–580 (1998).

    Article  CAS  Google Scholar 

  27. Targoni, O. S. & Lehmann, P. V. Endogenous myelin basic protein inactivates the high avidity T cell repertoire. J. Exp. Med. 187, 2055–2063 (1998).

    Article  CAS  Google Scholar 

  28. Anderson, A. C. et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med. 191, 761–770 (2000).

    Article  CAS  Google Scholar 

  29. Fairchild, P. J., Wildgoose, R., Atherton, E., Webb, S. & Wraith, D. C. An autoantigenic T cell epitope forms unstable complexes with class II MHC: a novel route for escape from tolerance induction. Int. Immunol. 5, 1151–1158 (1993).

    Article  CAS  Google Scholar 

  30. Anderton, S. M., Radu, C. G., Lowrey, P. A., Ward, E. S. & Wraith, D. C. Negative selection during the peripheral immune response to antigen. J. Exp. Med. 193, 1–11 (2001).

    Article  CAS  Google Scholar 

  31. Li, Y., Li, H., Martin, R. & Mariuzza, R. A. Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins. J. Mol. Biol. 304, 177–188 (2000).

    Article  CAS  Google Scholar 

  32. Anderton, S., Viner, N. J., Matharu, P., Lowrey, P. & Wraith, D. C. The influence of a dominant cryptic epitope on autoimmune T cell tolerance. Nat Immunol., this issue.

  33. Kissler, S., Anderton, S. M. & Wraith, D. C. Antigen-presenting cell activation: a link between infection and autoimmunity? J. Autoimmun. 16, 303–308 (2001).

    Article  CAS  Google Scholar 

  34. Watts, C. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu. Rev. Immunol. 15, 821–850 (1997).

    Article  CAS  Google Scholar 

  35. Ridsdale, R. A., Beniac, D. R., Tompkins, T. A., Moscarello, M. A. & Harauz, G. Three-dimensional structure of myelin basic protein. II. Molecular modeling and considerations of predicted structures in multiple sclerosis. J. Biol. Chem. 272, 4269–4275 (1997).

    Article  CAS  Google Scholar 

  36. Wright, H. T. Sequence and structure determinants of the nonenzymatic deamidation of asparagine and glutamine residues in proteins. Protein Eng. 4, 283–294 (1991).

    Article  CAS  Google Scholar 

  37. McAdam, S. N. et al. T cell recognition of the dominant I-A(k)-restricted hen egg lysozyme epitope: critical role for asparagine deamidation. J. Exp. Med. 193, 1239–1246 (2001).

    Article  CAS  Google Scholar 

  38. Wucherpfennig, K. & Strominger, J. L. Molecular mimicry in T-cell mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    Article  CAS  Google Scholar 

  39. Bates, I. R. et al. Characterization of a recombinant murine 18.5-kDa myelin basic protein. Protein Exp. Purif. 20, 285–299 (2000).

    Article  CAS  Google Scholar 

  40. Martenson, R. E., Levine, S. & Sowindki, R. The location of regions in guinea pig and bovine myelin basic proteins which induce experimental allergic encephalomyelitis in Lewis rats. J. Immunol. 114, 592–596 (1975).

    CAS  PubMed  Google Scholar 

  41. Hewitt, E. W. et al. Natural processing sites for human cathepsin E and capthepsin D in tetanus toxin. Implications for T cell epitope generation. J. Immunology 159, 4693–4699 (1997).

    CAS  Google Scholar 

  42. Davidson, H. W., West, M. A. & Watts, C. Endocytosis, intracellular trafficking, and processing of membrane IgG and monovalent antigen/membrane IgG complexes in B lymphocytes. J. Immunol. 144, 4101–4109 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Stockinger for the G8.8 antibody; D. Ni Li for anti-AEP antiserum; N. Morrice for peptide sequencing; and the Resource Centre, School of Life Sciences Dundee for help with thymus isolation. Supported by Wellcome Trust programme grants (to C. W. and D. C. W.). D. M. was supported by an European Union training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Watts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoury, B., Mazzeo, D., Fugger, L. et al. Destructive processing by asparagine endopeptidase limits presentation of a dominant T cell epitope in MBP. Nat Immunol 3, 169–174 (2002). https://doi.org/10.1038/ni754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing