Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections

Abstract

We report here the identification and functional characterization of DmMyD88, a gene encoding the Drosophila homolog of mammalian MyD88. DmMyD88 combines a Toll–IL-1R homology (TIR) domain and a death domain. Overexpression of DmMyD88 was sufficient to induce expression of the antifungal peptide Drosomycin, and induction of Drosomycin was markedly reduced in DmMyD88-mutant flies. DmMyD88 interacted with Toll through its TIR domain and required the death domain proteins Tube and Pelle to activate expression of Drs, which encodes Drosomycin. DmMyD88-mutant flies were highly susceptible to infection by fungi and Gram-positive bacteria, but resisted Gram-negative bacterial infection much as did wild-type flies. Phenotypic comparison of DmMyD88-mutant flies and MyD88-deficient mice showed essential differences in the control of Gram-negative infection in insects and mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Drosophila genome encodes a MyD88-related molecule.
Figure 2: DmMyD88 specifically induces the Drs promoter in transfected S2 cells.
Figure 3: DmMyD88 selectively associates with Toll through its TIR domain.
Figure 4: Constitutive expression of Drs and Mtk in transgenic flies overexpressing DmMyD88 in the fat body.
Figure 5: Expression of antimicrobial peptide genes in DmMyD88-mutant flies.
Figure 6: DmMyD88-mutant flies are extremely sensitive to fungal and Gram-positive bacterial infection.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Janeway, C. A. Jr Inaugural article: How the immune system works to protect the host from infection: A personal view. Proc. Natl Acad. Sci. USA 98, 7461–7468 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol. 2, 947–950 (2001).

    Article  CAS  Google Scholar 

  3. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. & Hoffmann, J. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Lemaitre, B., Reichhart, J. & Hoffmann, J. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614–14619 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Levashina, E. A. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Nicolas, E., Reichhart, J., Hoffmann, J. & Lemaitre, B. In vivo regulation of the IκB homologue cactus during the immune response of Drosophila. J. Biol. Chem. 273, 10463–10469 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Rutschmann, S. et al. The Rel protein DIF mediates the Toll-dependent antifungal response in Drosophila. Immunity 12, 569–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor–mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792–797 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Manfruelli, P., Reichhart, J. M., Steward, R., Hoffmann, J. A. & Lemaitre, B. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18, 3380–3391 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khush, R. S., Leulier, F. & Lemaitre, B. Drosophila immunity: two paths to NF-κB. Trends Immunol. 22, 260–264 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  14. Imler, J. & Hoffmann, J. A. Toll receptors in innate immunity. Trends Cell Biol. 11, 304–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2, 253–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Muzio, M., Ni, J., Feng, P. & Dixit, V. M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL- 1 signaling. Science 278, 1612–1615 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Takeuchi, O. et al. Cellular responses to bacterial cell wall components are mediated through MyD88-dependent signaling cascades. Int. Immunol. 12, 113–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Galindo, R. L., Edwards, D. N., Gillespie, S. K. & Wasserman, S. A. Interaction of the pelle kinase with the membrane-associated protein tube is required for transduction of the dorsoventral signal in Drosophila embryos. Development 121, 2209–2218 (1995).

    CAS  PubMed  Google Scholar 

  20. Shen, B. & Manley, J. L. Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development 125, 4719–4728 (1998).

    CAS  PubMed  Google Scholar 

  21. Wasserman, S. A. Toll signaling: the enigma variations. Curr. Opin. Genet. Dev. 10, 497–502 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Xu, Y. et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408, 111–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520–10525 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clemens, J. C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates the antibacterial response and can promote apoptosis. Dev. Cell 1, 503–514 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Rutschmann, S. et al. Role of Drosophila IKKγ in a Toll-independent antibacterial immune response. Nature Immunol. 1, 342–347 (2000).

    Article  CAS  Google Scholar 

  27. Edwards, D. N., Towb, P. & Wasserman, S. A. An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124, 3855–3864 (1997).

    CAS  PubMed  Google Scholar 

  28. Hacker, H. et al. Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor–associated factor (TRAF) 6. J. Exp. Med. 192, 595–600 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Schnare, M., Holtdagger, A. C., Takeda, K., Akira, S. & Medzhitov, R. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol. 10, 1139–1142 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Takeuchi, O., Hoshino, K. & Akira, S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J. Immunol. 165, 5392–5396 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Michel, T., Reichhart, J. M., Hoffmann, J. A. & Royet, J. Drosophila Toll is activated by Gram-positive bacteria via a circulating peptidoglycan recognition protein. Nature 414 (in the press, 2001).

  33. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev 15, 1900–1912 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10, 781–784 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Hedengren, M. et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol. Cell 4, 1–20 (1999).

    Article  Google Scholar 

  36. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist Gram-negative bacterial infection. EMBO Reports 1, 353–358 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104–110 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4) [published erratum appears in J Exp Med 1999 May 3;189(9):following 1518]. J. Exp. Med. 189, 615–625 (1999). Published erratum: J. Exp. Med. 189, 1518 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eldon, E. et al. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development 120, 885–899 (1994).

    CAS  PubMed  Google Scholar 

  41. Gerttula, S., Jin, Y. S. & Anderson, K. V. Zygotic expression and activity of the Drosophila Toll gene, a gene required maternally for embryonic dorsal–ventral pattern formation. Genetics 119, 123–133 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hashimoto, C., Hudson, K. & Anderson, K. The Toll gene of Drosophila, required for dorsal–ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52, 269–279 (1988).

    Article  CAS  PubMed  Google Scholar 

  43. Chiang, C. & Beachy, P. A. Expression of a novel Toll-like gene spans the parasegment boundary and contributes to hedgehog function in the adult eye of Drosophila. Mech. Dev. 47, 225–239 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Du, X., Poltorak, A., Wei, Y. & Beutler, B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Netw. 11, 362–371 (2000).

    CAS  PubMed  Google Scholar 

  45. Luo, C. & Zheng, L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics 51, 92–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Horng, T. & Medzhitov, R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc. Natl Acad. Sci. USA 98, 12654–12658 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Krasnow, M. A., Saffman, E. E., Kornfeld, K. & Hogness, D. S. Transcriptional activation and repression by Ultrabithorax proteins in cultured Drosophila cells. Cell 57, 1031–1043 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  49. Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).

    CAS  PubMed  Google Scholar 

  50. Xiao, T., Towb, P., Wasserman, S. A. & Sprang, S. R. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell 99, 545–555 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. O. Clauss, E. Santiago, R. Syllas and C. Chevalier for expert technical support; D. Ferrandon and P. Ligoxigakis for critical reading of the manuscript; our colleagues for stimulating discussions and suggestions; R. Medzhitov for sharing unpublished information; and the Bloomington Stock Center for fly strains. Supported by grants from the Centre National de la Recherche Scientifique, the Ministère de l'Education Nationale de la Recherche et de la Technologie, the National Institutes of Health, EntoMed (Strasbourg, France) and Exelixis (San Francisco, CA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Luc Imler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tauszig-Delamasure, S., Bilak, H., Capovilla, M. et al. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat Immunol 3, 91–97 (2002). https://doi.org/10.1038/ni747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing