Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of tumor-specific T cell memory by NK cell–mediated tumor rejection

Abstract

Natural killer (NK) cells may modulate the development of adaptive immune responses, but until now there has been little evidence to support this hypothesis. We investigated the primary and secondary immunity elicited by various tumor cell lines that express CD70 and interact with CD70 ligand (CD27), which is constitutively expressed on NK cells. CD70 expression enhanced primary tumor rejection in vivo as well as T cell immunity against secondary tumor challenge. Primary rejection of major histocompatibility complex (MHC) class I–deficient RMA-S.CD70 tumor cells was mediated by NK cells and perforin- and interferon-γ–dependent mechanisms. This NK cell–mediated process also efficiently evoked the subsequent development of tumor-specific cytotoxic and T helper type 1 responses to the parental, MHC class I–sufficient, RMA tumor cells. Thus CD27-CD70 interactions provide a key link between innate NK cell responses and adaptive T cell immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of CD70 on tumor cells.
Figure 2: Tumor rejection promoted by CD70 expression.
Figure 3: CD70 stimulates NK cell–mediated protection that requires perforin and IFN-γ.
Figure 4: Tumor CD70 expression evokes tumor-specific T cell memory.
Figure 5: NK cell–mediated primary rejection evokes tumor-specific T cell immunity.
Figure 6: Specific CTL responses evoked by CD70-driven NK cell–mediated tumor rejection.
Figure 7: Specific TH1 responses evoked by CD70-driven NK cell–mediated tumor rejection.
Figure 8: Priming of secondary T cell immunity requires NK cells and IFN-γ.

Similar content being viewed by others

References

  1. Trinchieri, G. Biology of natural killer cells. Adv. Immunol. 47, 187–376 (1989).

    Article  CAS  Google Scholar 

  2. Whiteside, T. L. & Herberman, R. B. Role of human natural killer cells in health and disease. Clin. Diagn. Lab. Immunol. 1, 125–133 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  4. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  Google Scholar 

  5. Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001).

    Article  CAS  Google Scholar 

  6. Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

    Article  CAS  Google Scholar 

  7. Lanier, L. L. NK cell receptors. Annu. Rev. Immunol. 16, 359–393 (1998).

    Article  CAS  Google Scholar 

  8. Nandi, D., Gross, J. A. & Allison, J. P. CD28-mediated costimulation is necessary for optimal proliferation of murine NK cells. J. Immunol. 152, 3361–3369 (1994).

    CAS  PubMed  Google Scholar 

  9. Azuma, M., Cayabyab, M., Buck, D., Phillips, J. H. & Lanier, L. L. Involvement of CD28 in MHC-unrestricted cytotoxicity mediated by a human natural killer leukemia cell line. J. Immunol. 149, 1115–1123 (1992).

    CAS  PubMed  Google Scholar 

  10. Geldhof, A. B., Moser, M. & De Baetselier, P. IL-12-activated NK cells recognize B7 costimulatory molecules on tumor cells and autologous dendritic cells. Adv. Exp. Med. Biol. 451, 203–210 (1998).

    Article  CAS  Google Scholar 

  11. Geldhof, A. B. et al. Expression of B7–1 by highly metastatic mouse T lymphomas induces optimal natural killer cell-mediated cytotoxicity. Cancer Res. 55, 2730–2733 (1995).

    CAS  PubMed  Google Scholar 

  12. Chambers, B. J., Salcedo, M. & Ljunggren, H. G. Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1). Immunity 5, 311–317 (1996).

    Article  CAS  Google Scholar 

  13. Wilson, J. L. et al. NK cell triggering by the human costimulatory molecules CD80 and CD86. J. Immunol. 163, 4207–4212 (1999).

    CAS  PubMed  Google Scholar 

  14. Kos, F. J. & Engleman, E. G. Immune regulation: a critical link between NK cells and CTLs. Immunol. Today 17, 174–176 (1996).

    Article  CAS  Google Scholar 

  15. Kos, F. J. Regulation of adaptive immunity by natural killer cells. Immunol. Res. 17, 303–312 (1998).

    Article  CAS  Google Scholar 

  16. Takeda, K. et al. CD27-mediated activation of murine NK cells. J. Immunol. 164, 1741–1745 (2000).

    Article  CAS  Google Scholar 

  17. Lens, S. M., Tesselaar, K., van Oers, M. H. & van Lier, R. A. Control of lymphocyte function through CD27–CD70 interactions. Semin. Immunol. 10, 491–499 (1998).

    Article  CAS  Google Scholar 

  18. Hintzen, R. Q., de Jong, R., Lens, S. M. & van Lier, R. A. CD27: marker and mediator of T-cell activation? Immunol. Today 15, 307–311 (1994).

    Article  CAS  Google Scholar 

  19. Gravestein, L. A., Nieland, J. D., Kruisbeek, A. M. & Borst, J. Novel mAbs reveal potent co-stimulatory activity of murine CD27. Int. Immunol. 7, 551–557 (1995).

    Article  CAS  Google Scholar 

  20. Herbst, H., Raff, T. & Stein, H. Phenotypic modulation of Hodgkin and Reed-Sternberg cells by Epstein- Barr virus. J. Pathol. 179, 54–59 (1996).

    Article  CAS  Google Scholar 

  21. Wolthers, K. C. et al. Increased expression of CD80, CD86 and CD70 on T cells from HIV- infected individuals upon activation in vitro: regulation by CD4+ T cells. Eur. J. Immunol. 26, 1700–1706 (1996).

    Article  CAS  Google Scholar 

  22. Hendriks, J. et al. CD27 is required for generation and long-term maintenance of T cell immunity. Nature Immunol. 1, 433–440 (2000).

    Article  CAS  Google Scholar 

  23. Ljunggren, H. G. & Karre, K. Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J. Exp. Med. 162, 1745–1759 (1985).

    Article  CAS  Google Scholar 

  24. Smyth, M. J., Kelly, J. M., Baxter, A. G., Korner, H. & Sedgwick, J. D. An essential role for tumor necrosis factor in natural killer cell- mediated tumor rejection in the peritoneum. J. Exp. Med. 188, 1611–1619 (1998).

    Article  CAS  Google Scholar 

  25. Smyth, M. J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  Google Scholar 

  26. Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    Article  CAS  Google Scholar 

  27. Lorenz, M. G., Kantor, J. A., Schlom, J. & Hodge, J. W. Anti-tumor immunity elicited by a recombinant vaccinia virus expressing CD70 (CD27L). Hum. Gene Ther. 10, 1095–1103 (1999).

    Article  CAS  Google Scholar 

  28. van den Broek, M. F., Kagi, D., Zinkernagel, R. M. & Hengartner, H. Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur. J. Immunol. 25, 3514–3516 (1995).

    Article  CAS  Google Scholar 

  29. Sijts, A. J. et al. Identification of an H-2 Kb-presented Moloney murine leukemia virus cytotoxic T-lymphocyte epitope that displays enhanced recognition in H- 2 Db mutant bm13 mice. J. Virol. 68, 6038–6046 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stukart, M. J. et al. A crucial role of the H-2 D locus in the regulation of both the D- and the K-associated cytotoxic T lymphocyte response against Moloney leukemia virus, demonstrated with two Db mutants. J. Immunol. 128, 1360–1364 (1982).

    CAS  PubMed  Google Scholar 

  31. Chen, W., Qin, H., Chesebro, B. & Cheever, M. A. Identification of a gag-encoded cytotoxic T-lymphocyte epitope from FBL- 3 leukemia shared by Friend, Moloney, and Rauscher murine leukemia virus-induced tumors. J. Virol. 70, 7773–7782 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ossendorp, F., Mengede, E., Camps, M., Filius, R. & Melief, C. J. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J. Exp. Med. 187, 693–702 (1998).

    Article  CAS  Google Scholar 

  33. van Hall, T. et al. Identification of a novel tumor-specific CTL epitope presented by RMA, EL-4, and MBL-2 lymphomas reveals their common origin. J. Immunol. 165, 869–877 (2000).

    Article  CAS  Google Scholar 

  34. Wolpert, E. Z. et al. Generation of CD8+ T cells specific for transporter associated with antigen processing deficient cells. Proc. Natl Acad. Sci. USA 94, 11496–11501 (1997).

    Article  CAS  Google Scholar 

  35. Kos, F. J. & Engleman, E. G. Requirement for natural killer cells in the induction of cytotoxic T cells. J. Immunol. 155, 578–584 (1995).

    CAS  PubMed  Google Scholar 

  36. Kurosawa, S. et al. Early-appearing tumour-infiltrating natural killer cells play a crucial role in the generation of anti-tumour T lymphocytes. Immunology 85, 338–346 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Suzuki, R., Suzuki, S., Ebina, N. & Kumagai, K. Suppression of alloimmune cytotoxic T lymphocyte (CTL) generation by depletion of NK cells and restoration by interferon and/or interleukin 2. J. Immunol. 134, 2139–2148 (1985).

    CAS  PubMed  Google Scholar 

  38. Burlington, D. B., Djeu, J. Y., Wells, M. A., Kiley, S. C. & Quinnan, G. V. Jr Large granular lymphocytes provide an accessory function in the in vitro development of influenza A virus-specific cytotoxic T cells. J. Immunol. 132, 3154–3158 (1984).

    CAS  PubMed  Google Scholar 

  39. Stitz, L., Baenziger, J., Pircher, H., Hengartner, H. & Zinkernagel, R. M. Effect of rabbit anti-asialo GM1 treatment in vivo or with anti-asialo GM1 plus complement in vitro on cytotoxic T cell activities. J. Immunol. 136, 4674–4680 (1986).

    CAS  PubMed  Google Scholar 

  40. Smyth, M. J. & Kelly, J. M. Accessory function for NK1.1+ natural killer cells producing interferon-γ in xenospecific cytotoxic T lymphocyte differentiation. Transplantation 68, 840–843 (1999).

    Article  CAS  Google Scholar 

  41. Shi, F. D. et al. Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nature Immunol. 1, 245–251 (2000).

    Article  CAS  Google Scholar 

  42. Ryan, J. C., Turck, J., Niemi, E. C., Yokoyama, W. M. & Seaman, W. E. Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J. Immunol. 149, 1631–1635 (1992).

    CAS  PubMed  Google Scholar 

  43. Diefenbach, A., Jensen, E. R., Jamieson, A. M. & Raulet, D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    Article  CAS  Google Scholar 

  44. Cerwenka, A., Baron, J. L. & Lanier, L. L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl Acad. Sci. USA 98, 11521–11526 (2001).

    Article  CAS  Google Scholar 

  45. Wilson, J. L. et al. Targeting of human dendritic cells by autologous NK cells. J. Immunol. 163, 6365–6370 (1999).

    CAS  Google Scholar 

  46. Sugita, K. et al. Participation of the CD27 antigen in the regulation of IL-2-activated human natural killer cells. J. Immunol. 149, 1199–1203 (1992).

    CAS  PubMed  Google Scholar 

  47. McCoy, J. L., Fefer, A. & Glynn, J. P. Influence of infectious virus on the induction of transplantation resistance in the Friend tumor system. Cancer Res. 27, 2267–2271 (1967).

    CAS  PubMed  Google Scholar 

  48. Klein, G., Klein, E. & Haughton, G. Variation of antigenic characteristics between different mouse lymphomas induced by the Moloney virus. J. Natl Cancer Inst. 36, 607–621 (1966).

    Article  CAS  Google Scholar 

  49. Zhou, F., Rouse, B. T. & Huang, L. Prolonged survival of thymoma-bearing mice after vaccination with a soluble protein antigen entrapped in liposomes: a model study. Cancer Res. 52, 6287–6291 (1992).

    CAS  PubMed  Google Scholar 

  50. Smyth, M. J., Taniguchi, M. & Street, S. E. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J. Immunol. 165, 2665–2670 (2000).

    Article  CAS  Google Scholar 

  51. Smyth, M. J. et al. Perforin is a major contributor to NK cell control of tumor metastasis. J. Immunol. 162, 6658–6662 (1999).

    CAS  PubMed  Google Scholar 

  52. Johnstone, R. W. et al. P-glycoprotein does not protect cells against cytolysis induced by pore- forming proteins. J. Biol. Chem. 276, 16667–16673 (2001).

    Article  CAS  Google Scholar 

  53. Hammond, K. J. et al. NKT cells are phenotypically and functionally diverse. Eur. J. Immunol. 29, 3768–3781 (1999).

    Article  CAS  Google Scholar 

  54. Arase, H., Arase, N. & Saito, T. Interferon-γ production by natural killer (NK) cells and NK1.1+ T cells upon NKR-P1 cross-linking. J. Exp. Med. 183, 2391–2396 (1996).

    Article  CAS  Google Scholar 

  55. Smyth, M. J. & Sedgwick, J. D. Delayed kinetics of tumor necrosis factor-mediated bystander lysis by peptide-specific CD8+ cytotoxic T lymphocytes. Eur. J. Immunol. 28, 4162–4169 (1998).

    Article  CAS  Google Scholar 

  56. Smyth, M. J., Crowe, N. Y. & Godfrey, D. I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol. 13, 459–463 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Hall and the staff of the PMCI for their maintenance and care of the mice in this project. Supported by Human Frontier Science Program and National Health and Medical Research Council of Australia (M. J. S.) and Diabetes Australia (D. I. G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Smyth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, J., Darcy, P., Markby, J. et al. Induction of tumor-specific T cell memory by NK cell–mediated tumor rejection. Nat Immunol 3, 83–90 (2002). https://doi.org/10.1038/ni746

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni746

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing