Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NFATc2 and NFATc3 regulate TH2 differentiation and modulate TCR-responsiveness of naïve TH cells

Abstract

The NFAT family of transcription factors are key regulators of inducible gene expression in the immune system. We examined the function of two NFAT proteins after naïve T helper (TH) cell activation. We found that naïve TH precursors that are doubly deficient in NFATc2 and NFATc3 intrinsically differentiate into TH2-secreting cells, even in the absence of interleukin 4 (IL-4) production. We also found that lack of NFATc2 and NFATc3 obviates the necessity for engagement of CD28 on naïve cells and controls the time required to reach the first cell division upon activation. These results demonstrate a key role for NFATc2 and NFATc3 in modulating T cell receptor responsiveness and regulating subsequent cell division and TH2 differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Naïve THp cells from DKO mice intrinsically differentiate into TH2-type cells but retain the capacity for TH1 polarization.
Figure 2: TH2 differentiation is not dependent on IL-4 production by TKO mice.
Figure 3: DKO and TKO THp cells show increased proliferation in response to stimulation.
Figure 4: Proliferation of naïve DKO and TKO cells upon engagement of TCR alone or both TCR and CD28.
Figure 5: Analysis of naïve THp cell division in response to TCR and CD28 ligation.
Figure 6: Intrinsic TH2 differentiation in DKO TH cells requires only TCR engagement in vitro.

Similar content being viewed by others

References

  1. Lanzavecchia, A., Iezzi, G. & Viola, A. From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96, 1–4 (1999).

    Article  CAS  Google Scholar 

  2. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  Google Scholar 

  3. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  Google Scholar 

  4. Rengarajan, J., Szabo, S. J. & Glimcher, L. H. Transcriptional regulation of Th1/Th2 polarization. Immunol. Today 21, 479–483 (2000).

    Article  CAS  Google Scholar 

  5. Rao, A., Luo, C. & Hogan, P. G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  Google Scholar 

  6. Rengarajan, J. et al. Sequential involvement of NFAT and Egr transcription factors in FasL regulation. Immunity 12, 293–300 (2000).

    Article  CAS  Google Scholar 

  7. Ranger, A. M., Oukka, M., Rengarajan, J. & Glimcher, L. H. Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 9, 627–635 (1998).

    Article  CAS  Google Scholar 

  8. Szabo, S. J., Glimcher, L. H. & Ho, I. C. Genes that regulate interleukin-4 expression in T cells. Curr. Opin. Immunol. 9, 776–781 (1997).

    Article  CAS  Google Scholar 

  9. Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).

    Article  CAS  Google Scholar 

  10. Ranger, A. M. et al. Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NFATc. Immunity 8, 125–134 (1998).

    Article  CAS  Google Scholar 

  11. Peng, S. L., Gerth, A. J., Ranger, A. M. & Glimcher, L. H. NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13–20 (2001).

    Article  CAS  Google Scholar 

  12. Hodge, M. R. et al. Hyperproliferation and dysregulation of IL-4 expression in NF-ATp- deficient mice. Immunity 4, 397–405 (1996).

    Article  CAS  Google Scholar 

  13. Xanthoudakis, S. et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272, 892–895 (1996).

    Article  CAS  Google Scholar 

  14. Kiani, A., Rao, A. & Aramburu, J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359–372 (2000).

    Article  CAS  Google Scholar 

  15. Oukka, M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9, 295–304 (1998).

    Article  CAS  Google Scholar 

  16. Seder, R. A. & Paul, W. E. in Annu. Rev. Immunol (eds. Paul, W. E. et al.) 635–673 (Annual Reviews, Palo Alto, CA, 1994).

  17. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naïve and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  Google Scholar 

  18. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  Google Scholar 

  19. Gett, A. V. & Hodgkin, P. D. A cellular calculus for signal integration by T cells. Nature Immunol. 1, 239–244 (2000).

    Article  CAS  Google Scholar 

  20. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  21. Wulfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  CAS  Google Scholar 

  22. Gett, A. V. & Hodgkin, P. D. Cell division regulates the T cell cytokine repertoire, revealing a mechanism underlying immune class regulation. Proc. Natl. Acad. Sci. USA 95, 9488–9493 (1998).

    Article  CAS  Google Scholar 

  23. Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  Google Scholar 

  24. Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med. 190, 1439–1450 (1999).

    Article  CAS  Google Scholar 

  25. Kubo, M. et al. CD28 costimulation accelerates IL-4 receptor sensitivity and IL-4- mediated Th2 differentiation. J. Immunol. 163, 2432–2442 (1999).

    CAS  PubMed  Google Scholar 

  26. Oosterwegel, M. A. et al. The role of CTLA-4 in regulating Th2 differentiation. J. Immunol. 163, 2634–2639 (1999).

    CAS  PubMed  Google Scholar 

  27. Rulifson, I. C., Sperling, A. I., Fields, P. E., Fitch, F. W. & Bluestone, J. A. CD28 costimulation promotes the production of Th2 cytokines. J. Immunol. 158, 658–665 (1997).

    CAS  PubMed  Google Scholar 

  28. Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710 (1991).

    Article  CAS  Google Scholar 

  29. McKenzie, G. J. et al. Impaired development of Th2 cells in IL-13–deficient mice. Immunity 9, 423–432 (1998).

    Article  CAS  Google Scholar 

  30. McKenzie, G. J., Fallon, P. G., Emson, C. L., Grencis, R. K. & McKenzie, A. N. J. Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2-mediated responses. J. Exp. Med. 189, 1565–1572 (1999).

    Article  CAS  Google Scholar 

  31. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  Google Scholar 

  32. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998).

    CAS  Google Scholar 

  33. Ouyang, W. et al. Inhibition of Th1 developmental mediated by GATA-3 through an IL-4 independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Wurster, S. Szabo and other members of the laboratory for discussions and comments on the manuscript; M. Handly and R. McGilp for FACS expertise; and C. McCall for preparing the manuscript. Supported by the National Institutes of Health AI31541-05 (L. H. G.), the G. Harold and Leila Y. Mathers Charitable Foundation (L. H. G.) and Fogarty International (J. R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurie H. Glimcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rengarajan, J., Tang, B. & Glimcher, L. NFATc2 and NFATc3 regulate TH2 differentiation and modulate TCR-responsiveness of naïve TH cells. Nat Immunol 3, 48–54 (2002). https://doi.org/10.1038/ni744

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing