Infection of dendritic cells by murine cytomegalovirus induces functional paralysis


Cytomegalovirus (CMV), measles and HIV are the main human pathogens known to induce immunosuppression. Unlike measles and HIV, and despite the availability of a well studied animal model, little is known about the mechanisms that control CMV-induced immunosuppression. We hypothesized that dendritic cells (DCs), which are crucial in generating and maintaining immune responses, represent a target for CMV and that the transient, but profound, immunosuppression that accompanies CMV infection results from viral interference with DC functions. Here we show that DCs were permissive to murine CMV infection. In addition, DC infection prevented delivery of the signals required for T cell activation. Thus, CMV-mediated impairment of DC function may be crucial for virally induced immunosuppression and interleukin 2 is implicated as a key factor.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: MCMV infection of DCs in vitro and in vivo.
Figure 2: MCMV-infected DCs showed impaired antigen uptake.
Figure 3: MCMV infection altered the phenotype of immature D1 cells.
Figure 4: MCMV infection down-regulated expression of DC markers on DCs in vivo.
Figure 5: MCMV-infected DCs were refractile to phenotypic maturation after LPS stimulation.
Figure 6: DCs viability was not altered by MCMV infection.
Figure 7: MCMV infection altered the secretion of IL-12 and IL-2 by DCs.
Figure 8: MCMV infection of DCs impaired their allostimulatory capacity.


  1. 1

    Naniche, D. & Oldstone, M. B. A. Generalized immunosuppression: how viruses undermine the immune response. Cell. Mol. Life. Sci. 57, 1399–1407 (1999).

    Article  Google Scholar 

  2. 2

    Alford, C. A. & Britt, W. J. in Virology (ed. Fields, B. N.) 2493–2523 (Raven Press, New York, 1996).

    Google Scholar 

  3. 3

    Koszinowski, U. H., Jonjic, S. & Lucin, P. Cytomegalovirus persistence by evasion from immune control. Semin. Virol. 5, 297–312 (1994).

    Article  Google Scholar 

  4. 4

    Hengel, H., Brune, W. & Koszinowski, U. H. Immune evasion by cytomegalovirus–survival strategies of a highly adapted opportunist. Trends Microbiol. 6, 190–197 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Hengel, H. et al. Cytomegaloviral control of MHC class I function in the mouse. Immunol. Rev. 168, 167–176 (1999).

    CAS  Article  Google Scholar 

  6. 6

    Heise, M. T. et al. Murine cytomegalovirus infection inhibits IFN γ-induced MHC class II expression on macrophages: the role of type I interferon. Virology 241, 331–344 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Redpath, S., Angulo, A., Gascoigne, N. R. J. & Ghazal, P. Murine cytomegalovirus infection down-regulates MHC class II expression on macrophages by induction of IL-10. J. Immunol. 162, 6701–6707 (1999).

    CAS  PubMed  Google Scholar 

  8. 8

    Fleming, P. et al. The murine cytomegalovirus chemokine homolog, m131/129, is a determinant of viral pathogenicity. J. Virol. 73, 6800–6809 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Farrell, H. E. et al. Inhibition of natural killer cells by a cytomegalovirus MHC class I homologue in vivo. Nature 386, 510–514 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Heise, M. T., Connick, M. & Virgin, H. W. t. Murine cytomegalovirus inhibits interferon γ-induced antigen presentation to CD4 T cells by macrophages via regulation of expression of major histocompatibility complex class II-associated genes. J. Exp. Med. 187, 1037–1046 (1998).

    CAS  Article  Google Scholar 

  11. 11

    Farrell, H. E., Degli-Esposti, M. A. & Davis-Poynter, N. J. Cytomegalovirus evasion of natural killer cell responses. Immunol. Rev. 168, 187–197 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Stoddart, C. A. et al. Peripheral blood mononuclear phagocytes mediate dissemination of murine cytomegalovirus. J. Virol. 68, 6243–6253 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Collins, T. M., Quirk, M. R. & Jordan, M. C. Biphasic viremia and viral gene expression in leukocytes during acute cytomegalovirus infection of mice. J. Virol. 68, 6305–6311 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Hanson, L. K. et al. Replication of murine cytomegalovirus in differentiated macrophages as a determinant of viral pathogenesis. J. Virol. 73, 5970–5980 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Riegler, S. et al. Monocyte-derived dendritic cells are permissive to the complete replicative cycle of human cytomegalovirus. J. Gen. Virol. 81, 393–399 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Austyn, J. M. New insights into the mobilization and phagocytic activity of dendritic cells. J. Exp. Med. 183, 1287–1292 (1996).

    CAS  Article  Google Scholar 

  18. 18

    De Smedt, T. et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J. Exp. Med. 184, 1413–1424 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Rescigno, M., Granucci, F. & Ricciardi-Castagnoli, P. Dendritic cells at the end of the Millennium. Immunol. Cell Biol. 77, 404–410 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–28 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Granucci, F. et al. Early events in dendritic cell maturation induced by LPS. Microbes Infect. 1, 1079–1084 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Schuurhuis, D. H. et al. Immature dendritic cells acquire CD8(+) cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J. Exp. Med. 192, 145–150 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Suri, R. M. & Austyn, J. M. Bacterial lipopolysaccharide contamination of commercial collagen preparations may mediate dendritic cell maturation in culture. J. Immunol. Meth. 214, 149–163 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Vremec, D., Pooley, J., Hochrein, H., Wu, L. & Shortman, K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164, 2978–2986 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Davis-Poynter, N. J. et al. Identification and characterization of a G protein-coupled receptor homolog encoded by murine cytomegalovirus. J. Virol. 71, 1521–1529 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nature Immunol. 2, 882–888 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Rinaldo, C. R. Immune suppression by herpesviruses. Ann. Rev. Med. 41, 331–338 (1990).

    Article  Google Scholar 

  28. 28

    Hirsch, M. S. & Felsenstein, D. CMV-associated immunosuppression. Ann. NY Acad. Sci. 437, 8–15 (1984).

    CAS  Article  Google Scholar 

  29. 29

    Rubin, R. H. in Clinical Approach to Infections in the Immunocompromised Patient (eds. Rubin, R. H. & Young, L. S.) 557–583 (Plenum Press, New York, 1988).

    Google Scholar 

  30. 30

    Kay, M. A., Glorioso, J. C. & Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicle therapeutics. Nature Med. 7, 33–40 (2001).

    CAS  Article  Google Scholar 

  31. 31

    Garrett, W. S. et al. Developmental control of endocytosis in dendritic cells by Cdc42. Cell 102, 325–334 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment - downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    CAS  Article  Google Scholar 

  33. 33

    Hengel, H. et al. Macrophages escape inhibition of major histocompatibility complex class I-dependent antigen presentation by cytomegalovirus. J. Virol. 74, 7861–7868 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Turley, S. J. et al. Transport of peptide-MHC class II complexes in developing dendritic cells. Science 288, 522–527 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Karre, K. How to recognize a foreign submarine. Immunol. Rev. 155, 5–9 (1997).

    CAS  Article  Google Scholar 

  36. 36

    Chambers, B. J., Salcedo, M. & Ljunggren, H. G. Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1). Immunity 5, 311–317 (1996).

    CAS  Article  Google Scholar 

  37. 37

    Cretney, E. et al. m144, a murine cytomegalovirus (MCMV)-encoded major histocompatibility complex class I homologue, confers tumor resistance to natural killer cell-mediated rejection. J. Exp. Med. 190, 435–444 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and non-polarized T cells. Nature Immunol. 1, 311–316 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity. 14, 105–110 (2001).

    CAS  PubMed  Google Scholar 

  40. 40

    Timon, M. et al. Selective impairment of T lymphocyte activation through the T cell receptor/CD3 complex after cytomegalovirus infection. Clin. Exp. Immunol. 94, 38–42 (1993).

    CAS  Article  Google Scholar 

  41. 41

    Kapasi, K. & Rice, G. P. A. Cytomegalovirus infection of peripheral blood mononuclear cells: effects on interleukin-1 and -2 production and responsiveness. J. Virol. 62, 3603–3607 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Blackett, S. & Mims, C. A. Studies of depressed interleukin-2 production by spleen cells from mice following infection with cytomegalovirus. Arch. Virol. 99, 1–8 (1988).

    CAS  Article  Google Scholar 

  43. 43

    Reddehase, M. J., Mutter, W. & Koszinowski, U. H. In vivo application of recombinant interleukin-2 in the immunotherapy of established cytomegalovirus infection. J. Exp. Med. 165, 650–656 (1987).

    CAS  Article  Google Scholar 

  44. 44

    Slater, J. S., Futch, W. S., Cavanaugh, V. J. & Campbell, A. E. Murine cytomegalovirus independently inhibits priming of helper and cytotoxic T lymphocytes. Virology 185, 132–139 (1991).

    CAS  Article  Google Scholar 

  45. 45

    Carney, W. P. & Hirsch, M. S. Mechanisms of immunosuppression in cytomegalovirus mononucleosis. II. Virus-monocyte interactions. J. Infect. Dis. 144, 47–54 (1981).

    CAS  Article  Google Scholar 

  46. 46

    Kapasi, K. & Rice G. P. A. Role of the monocyte in cytomegalovirus-mediated immunosuppression in vitro. J. Infect. Dis. 154, 881–884 (1986).

    CAS  Article  Google Scholar 

  47. 47

    Yoshida, H. et al. Induction of apoptosis of T cells by infecting mice with murine cytomegalovirus. J. Virol. 69, 4769–4775 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Vremec, D. et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176, 47–58 (1992).

    CAS  Article  Google Scholar 

  49. 49

    Maraskovsky, E. et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J. Exp. Med. 184, 1953–1962 (1996).

    CAS  Article  Google Scholar 

  50. 50

    Hochrein, H. et al. Interleukin(IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J. Exp. Med. 192, 823–833 (2000).

    CAS  Article  Google Scholar 

Download references


We thank M. Wikstrom (The Lotteries Commission of Western Australia Flow Cytometry and Cell Sorting Facility) for assistance with the purification of DCs by cell sorting; H. Tabarias for help with the cytokine ELISA assays; and E. Maraskovsky, M. Smyth, G. Shellam, A Strasser, G. Begley, H. Farrell and A. Scalzo for continued support, critical discussions and reading of this manuscript. Supported by the National Health and Medical Research Council of Australia (grants 110287, 110288), a Wellcome Trust Overseas Senior Research Fellowship in Biomedical Science in Australia (M. A. D.-E.) and AMRAD (D. M. A.).

Author information



Corresponding author

Correspondence to Mariapia A. Degli-Esposti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andrews, D., Andoniou, C., Granucci, F. et al. Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat Immunol 2, 1077–1084 (2001).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing