Association between the Igk and Igh immunoglobulin loci mediated by the 3′ Igk enhancer induces 'decontraction' of the Igh locus in pre–B cells

Abstract

Variable-(diversity)-joining (V(D)J) recombination at loci encoding the immunoglobulin heavy chain (Igh) and immunoglobulin light chain (Igk) takes place sequentially during successive stages in B cell development. Using three-dimensional DNA fluorescence in situ hybridization, here we identify a lineage-specific and stage-specific interchromosomal association between these two loci that marks the transition between Igh and Igk recombination. Colocalization occurred between pericentromerically located alleles in pre–B cells and was mediated by the 3′ Igk enhancer. Deletion of this regulatory element prevented association of the Igh and Igk loci, inhibited pericentromeric recruitment and locus 'decontraction' of an Igh allele, and resulted in greater distal rearrangement of the gene encoding the variable heavy-chain region. Our data indicate involvement of the Igk locus and its 3′ enhancer in directing the Igh locus to a repressive nuclear subcompartment and inducing the Igh locus to decontract.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Interchromosomal association between one Igh allele and one Igk allele coincides with pericentromeric recruitment of the two loci.
Figure 2: The association between Igh and Igk occurs on the pericentromerically recruited allele.
Figure 3: Increased pericentromeric recruitment of Igk promotes a higher frequency of interchromosomal association between Igh and Igk and more pericentromeric recruitment of Igh dependent on 3′Eκ.
Figure 4: Association of Igh and Igk increases with increasing recruitment of Igk to pericentromeric regions.
Figure 5: The association of Igh and Igk and the pericentromeric recruitment of Igh at the pre–B cell stage in development are mediated by 3′Eκ.
Figure 6: The association of Igh and Igk mediates decontraction of the Igh locus.
Figure 7: Deletion of the VHJ558 CT7-526A1 probe occurs more frequently in 3′Eκ-knockout pre–B cells than in wild-type or MiEκ-knockout pre–B cells.
Figure 8: Altered spectrum of proximal versus distal VH gene segment rearrangements in 3′Eκ-knockout splenic B cells.

References

  1. 1

    Alt, F.W. et al. Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J. 3, 1209–1219 (1984).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Jung, D., Giallourakis, C., Mostoslavsky, R. & Alt, F.W. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu. Rev. Immunol. 24, 541–570 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4

    Roldan, E. et al. Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat. Immunol. 6, 31–41 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Geier, J.K. & Schlissel, M.S. Pre-BCR signals and the control of Ig gene rearrangements. Semin. Immunol. 18, 31–39 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Fitzsimmons, S.P., Bernstein, R.M., Max, E.E., Skok, J.A. & Shapiro, M.A. Dynamic changes in accessibility, nuclear positioning, recombination, and transcription at the Igκ locus. J. Immunol. 179, 5264–5273 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Gorman, J.R. et al. The Igκ enhancer influences the ratio of Igκ versus Igλ B lymphocytes. Immunity 5, 241–252 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Inlay, M., Alt, F.W., Baltimore, D. & Xu, Y. Essential roles of the κ light chain intronic enhancer and 3′ enhancer in κ rearrangement and demethylation. Nat. Immunol. 3, 463–468 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Inlay, M.A., Lin, T., Gao, H.H. & Xu, Y. Critical roles of the immunoglobulin intronic enhancers in maintaining the sequential rearrangement of IgH and Igk loci. J. Exp. Med. 203, 1721–1732 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Stanhope-Baker, P., Hudson, K.M., Shaffer, A.L., Constantinescu, A. & Schlissel, M.S. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell 85, 887–897 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Skok, J.A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2, 848–854 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Goldmit, M. et al. Epigenetic ontogeny of the Igk locus during B cell development. Nat. Immunol. 6, 198–203 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Sato, H., Saito-Ohara, F., Inazawa, J. & Kudo, A. Pax-5 is essential for kappa sterile transcription during Igκ chain gene rearrangement. J. Immunol. 172, 4858–4865 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Skok, J.A. et al. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat. Immunol. 8, 378–387 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Rolink, A., Grawunder, U., Winkler, T.H., Karasuyama, H. & Melchers, F. IL-2 receptor α chain (CD25, TAC) expression defines a crucial stage in pre-B cell development. Int. Immunol. 6, 1257–1264 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Chowdhury, D. & Sen, R. Transient IL-7/IL-7R signaling provides a mechanism for feedback inhibition of immunoglobulin heavy chain gene rearrangements. Immunity 18, 229–241 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Spilianakis, C.G., Lalioti, M.D., Town, T., Lee, G.R. & Flavell, R.A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Ling, J.Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269–272 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Xu, N., Tsai, C.L. & Lee, J.T. Transient homologous chromosome pairing marks the onset of X inactivation. Science 311, 1149–1152 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Bacher, C.P. et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat. Cell Biol. 8, 293–299 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Campbell, R. Statistics for Biologists 3rd edn. 107–117 (Cambridge University Press, 1989).

    Google Scholar 

  24. 24

    Schlissel, M.S., Corcoran, L.M. & Baltimore, D. Virus-transformed pre-B cells show ordered activation but not inactivation of immunoglobulin gene rearrangement and transcription. J. Exp. Med. 173, 711–720 (1991).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Lopez for expertise and contribution to flow cytometry. F. Alt (Harvard University) provided 3′Eκ-knockout mice. Supported by the Wellcome Trust, New York University School of Medicine and the National Institutes of Health (RO1 HL48702 and RO1 AI40227 to M.S.S.).

Author information

Affiliations

Authors

Contributions

S.L.H., bone marrow preparation, FISH experiments and V(D)J analysis; D.F., FISH experiments; K.M., bone marrow preparation and flow cytometry staining; E.C. and M.S.S., V(D)J analysis and breeding of 3′Eκ-knockout mice and MiEκ-knockout mice; H.-E.L., V(D)J analysis; Y.X., analysis of MiEκ-knockout mice; and J.A.S., FISH experiments and confocal analysis.

Corresponding author

Correspondence to Jane A Skok.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Tables 1–8 (PDF 490 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hewitt, S., Farmer, D., Marszalek, K. et al. Association between the Igk and Igh immunoglobulin loci mediated by the 3′ Igk enhancer induces 'decontraction' of the Igh locus in pre–B cells. Nat Immunol 9, 396–404 (2008). https://doi.org/10.1038/ni1567

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing