Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogen subversion of cell-intrinsic innate immunity

An Erratum to this article was published on 01 January 2008

This article has been updated

Abstract

The mammalian immune system has evolved under continuous selective pressure from a wide range of microorganisms that colonize and replicate in animal hosts. A complex set of signaling networks initiate both innate and adaptive immunity in response to the diverse pathogens that mammalian hosts encounter. In response, viral and microbial pathogens have developed or acquired sophisticated mechanisms to avoid, counteract and subvert sensors, signaling networks and a range of effector functions that constitute the host immune response. This balance of host response and pathogen countermeasures contributes to chronic infection in highly adapted pathogens that have coevolved with their host. In this review we outline some of the themes that are beginning to emerge in the mechanisms by which pathogens subvert the early innate immune response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial evasion of TLR detection.
Figure 2: Disruption of innate signaling pathways by microbial proteins.

Similar content being viewed by others

Change history

  • 17 December 2007

    In the version of this article initially published, some of the reference numbering in the list and text is incorrect, and a reference is missing. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Lee, M.S. & Kim, Y.J. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu. Rev. Biochem. 76, 447–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Pulendran, B. Tolls and beyond–many roads to vaccine immunity. N. Engl. J. Med. 356, 1776–1778 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Uematsu, S. & Akira, S. Toll-like receptors and type I interferons. J. Biol. Chem. 282, 15319–15323 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. van Vliet, S.J., Dunnen, J., Gringhuis, S.I., Geijtenbeek, T.B. & van Kooyk, Y. Innate signaling and regulation of dendritic cell immunity. Curr. Opin. Immunol. 4, 435–440 (2007).

    Article  CAS  Google Scholar 

  6. Fritz, J.H., Ferrero, R.L., Philpott, D.J. & Girardin, S.E. Nod-like proteins in immunity, inflammation and disease. Nat. Immunol. 7, 1250–1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Tattoli, I., Travassos, L.H., Carneiro, L.A., Magalhaes, J.G. & Girardin, S.E. The Nodosome: Nod1 and Nod2 control bacterial infections and inflammation. Semin. Immunopathol. 29, 289–301 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Creagh, E.M. & O'Neill, L.A. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 27, 352–357 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Yoneyama, M. & Fujita, T. Function of RIG-I-like receptors in antiviral innate immunity. J. Biol. Chem. 282, 15315–15318 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Hengel, H., Koszinowski, U.H. & Conzelmann, K.K. Viruses know it all: new insights into IFN networks. Trends Immunol. 26, 396–401 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kawai, T. & Akira, S. Antiviral signaling through pattern recognition receptors. J. Biochem. 141, 137–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Lodoen, M.B. & Lanier, L.L. Viral modulation of NK cell immunity. Nat. Rev. Microbiol. 3, 59–69 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Mossman, K.L. & Ashkar, A.A. Herpesviruses and the innate immune response. Viral Immunol. 18, 267–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Seth, R.B., Sun, L. & Chen, Z.J. Antiviral innate immunity pathways. Cell Res. 16, 141–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Stanford, M.M., Werden, S.J. & McFadden, G. Myxoma virus in the European rabbit: interactions between the virus and its susceptible host. Vet. Res. 38, 299–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Takeuchi, O. & Akira, S. Signaling pathways activated by microorganisms. Curr. Opin. Cell Biol. 19, 185–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Vidal, S.M. & Lanier, L.L. NK cell recognition of mouse cytomegalovirus-infected cells. Curr. Top. Microbiol. Immunol. 298, 183–206 (2006).

    CAS  PubMed  Google Scholar 

  19. O'Garra, A. & Vieira, P.T. (H)1 cells control themselves by producing interleukin-10. Nat. Rev. Immunol. 7, 425–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Pearce, E.J., Kane, C.M. & Sun, J. Regulation of dendritic cell function by pathogen-derived molecules plays a key role in dictating the outcome of the adaptive immune response. Chem. Immunol. Allergy 90, 82–90 (2006).

    CAS  PubMed  Google Scholar 

  21. Sacks, D. & Sher, A. Evasion of innate immunity by parasitic protozoa. Nat. Immunol. 3, 1041–1047 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Alexander, J. & Bryson, K. T helper (h)1/Th2 and Leishmania: paradox rather than paradigm. Immunol. Lett. 99, 17–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Jankovic, D., Steinfelder, S., Kullberg, M.C. & Sher, A. Mechanisms underlying helminth- induced Th2 polarization: default, negative or positive pathways? Chem. Immunol. Allergy 90, 65–81 (2006).

    CAS  PubMed  Google Scholar 

  24. Maizels, R.M. Infections and allergy - helminths, hygiene and host immune regulation. Curr. Opin. Immunol. 17, 656–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Johnson, L.M. & Scott, P. STAT1 expression in dendritic cells, but not T cells, is required for immunity to Leishmania major. J. Immunol. 178, 7259–7266 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Bubic, I. et al. Gain of virulence caused by loss of a gene in murine cytomegalovirus. J. Virol. 78, 7536–7544 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krmpotic, A. et al. The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J. Exp. Med. 190, 1285–1296 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leib, D.A., Machalek, M.A., Williams, B.R., Silverman, R.H. & Virgin, H.W. Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc. Natl. Acad. Sci. USA 97, 6097–6101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hemmrich, G., Miller, D.J. & Bosch, T.C. The evolution of immunity: a low-life perspective. Trends Immunol. 28, 449–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Lemaitre, B. & Hoffmann, J. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto, M. & Akira, S. TIR domain-containing adaptors regulate TLR signaling pathways. Adv. Exp. Med. Biol. 560, 1–9 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, G., Zhuchenko, O. & Kuspa, A. Immune-like phagocyte activity in the social amoeba. Science 317, 678–681 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blander, J.M. & Medzhitov, R. On regulation of phagosome maturation and antigen presentation. Nat. Immunol. 7, 1029–1035 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Fritz, J.H. et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26, 445–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Sato, A. & Iwasaki, A. Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments. Proc. Natl. Acad. Sci. USA 101, 16274–16279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Kawai, T. & Akira, S. TLR signaling. Semin. Immunol. 19, 24–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Raetz, C.R. & Whitfield, C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71, 635–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J. & Mathison, J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Miller, S.I., Ernst, R.K. & Bader, M.W. LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 3, 36–46 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Schromm, A.B. et al. Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur. J. Biochem. 267, 2008–2013 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Schromm, A.B. et al. The charge of endotoxin molecules influences their conformation and IL-6-inducing capacity. J. Immunol. 161, 5464–5471 (1998).

    CAS  PubMed  Google Scholar 

  45. Girard, R. et al. Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2. J. Cell Sci. 116, 293–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Smith, M.F., Jr et al. Toll-like receptor (TLR) 2 and TLR5, but not TLR4, are required for Helicobacter pylori-induced NF-κB activation and chemokine expression by epithelial cells. J. Biol. Chem. 278, 32552–32560 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Moran, A.P., Lindner, B. & Walsh, E.J. Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides. J. Bacteriol. 179, 6453–6463 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Smith, K.D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247–1253 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Andersen-Nissen, E. et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl. Acad. Sci. USA 102, 9247–9252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zamboni, D.S. et al. Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J. Biol. Chem. 279, 54405–54415 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Shannon, J.G., Howe, D. & Heinzen, R.A. Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc. Natl. Acad. Sci. USA 102, 8722–8727 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dustin, L.B. & Rice, C.M. Flying under the radar: the immunology of hepatitis C. Annu. Rev. Immunol. 25, 71–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Brown, G.D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. McGreal, E.P., Miller, J.L. & Gordon, S. Ligand recognition by antigen-presenting cell C-type lectin receptors. Curr. Opin. Immunol. 17, 18–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Kissenpfennig, A. et al. Disruption of the langerin/CD207 gene abolishes Birbeck granules without a marked loss of Langerhans cell function. Mol. Cell. Biol. 25, 88–99 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saijo, S. et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat. Immunol. 8, 39–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Taylor, P.R. et al. Dectin-1 is required for β-glucan recognition and control of fungal infection. Nat. Immunol. 8, 31–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Gringhuis, S.I. et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity 26, 605–616 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Underhill, D.M. Collaboration between the innate immune receptors dectin-1, TLRs, and Nods. Immunol. Rev. 219, 75–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Dennehy, K.M. & Brown, G.D. The role of the β-glucan receptor dectin-1 in control of fungal infection. J. Leukoc. Biol. 82, 253–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Balagopal, A. et al. Characterization of the receptor-ligand pathways important for entry and survival of Francisella tularensis in human macrophages. Infect. Immun. 74, 5114–5125 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Delbridge, L.M. & O'Riordan, M.X. Innate recognition of intracellular bacteria. Curr. Opin. Immunol. 19, 10–16 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Ogura, Y., Sutterwala, F.S. & Flavell, R.A. The inflammasome: first line of the immune response to cell stress. Cell 126, 659–662 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Di Virgilio, F. Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol. Sci. 28, 465–472 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Kanneganti, T.D. et al. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26, 433–443 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat. Immunol. 7, 576–582 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Miao, E.A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat. Immunol. 7, 569–575 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Molofsky, A.B. et al. Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J. Exp. Med. 203, 1093–1104 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ren, T., Zamboni, D.S., Roy, C.R., Dietrich, W.F. & Vance, R.E. Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog. 2, e18 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kettle, S. et al. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1β-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1β-induced fever. J. Gen. Virol. 78, 677–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Smith, V.P. & Alcami, A. Expression of secreted cytokine and chemokine inhibitors by ectromelia virus. J. Virol. 74, 8460–8471 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jarvis, M.A. et al. Human cytomegalovirus attenuates interleukin-1beta and tumor necrosis factor alpha proinflammatory signaling by inhibition of NF-κB activation. J. Virol. 80, 5588–5598 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Johnston, J.B. et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 23, 587–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Bowie, A.G. & Fitzgerald, K.A. RIG-I: tri-ing to discriminate between self and non-self RNA. Trends Immunol. 28, 147–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Johnson, C.L. & Gale, M., Jr. CARD games between virus and host get a new player. Trends Immunol. 27, 1–4 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Malathi, K., Dong, B., Gale, M., Jr & Silverman, R.H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448, 816–819 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Garcia-Sastre, A. & Biron, C.A. Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312, 879–882 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103, 8459–8464 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hiscott, J. Triggering the innate antiviral response through IRF-3 activation. J. Biol. Chem. 282, 15325–15329 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Park, H.H. et al. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu. Rev. Immunol. 25, 561–586 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kumar, H. et al. Essential role of IPS-1 in innate immune responses against RNA viruses. J. Exp. Med. 203, 1795–1803 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhao, T. et al. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat. Immunol. 8, 592–600 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Saito, T. & Gale, M., Jr. Principles of intracellular viral recognition. Curr. Opin. Immunol. 19, 17–23 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Abate, D.A., Watanabe, S. & Mocarski, E.S. Major human cytomegalovirus structural protein pp65 (ppUL83) prevents interferon response factor 3 activation in the interferon response. J. Virol. 78, 10995–11006 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alff, P.J. et al. The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG-I- and TBK-1-directed interferon responses. J. Virol. 80, 9676–9686 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barro, M. & Patton, J.T. Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J. Virol. 81, 4473–4481 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chang, T.H., Liao, C.L. & Lin, Y.L. Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-κB activation. Microbes Infect. 8, 157–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Hilton, L. et al. The NPro product of bovine viral diarrhea virus inhibits DNA binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J. Virol. 80, 11723–11732 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jaaskelainen, K.M. et al. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-β promoter. J. Med. Virol. 79, 1527–1536 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Kopecky-Bromberg, S.A., Martinez-Sobrido, L., Frieman, M., Baric, R.A. & Palese, P. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81, 548–557 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Martinez-Sobrido, L., Giannakas, P., Cubitt, B., Garcia-Sastre, A. & de La Torre, J. C. Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J. Virol. published online 5 September 2007 (doi:10.1128/JVI.00882-07).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Peng, T., Kotla, S., Bumgarner, R.E. & Gustin, K.E. Human rhinovirus attenuates the type I interferon response by disrupting activation of interferon regulatory factor 3. J. Virol. 80, 5021–5031 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Roth-Cross, J.K., Martinez-Sobrido, L., Scott, E.P., Garcia-Sastre, A. & Weiss, S.R. Inhibition of the alpha/beta interferon response by mouse hepatitis virus at multiple levels. J. Virol. 81, 7189–7199 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sen, G.C. & Peters, G.A. Viral stress-inducible genes. Adv. Virus Res. 70, 233–263 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. He, B. Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ. 13, 393–403 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Langland, J.O., Cameron, J.M., Heck, M.C., Jancovich, J.K. & Jacobs, B.L. Inhibition of PKR by RNA and DNA viruses. Virus Res. 119, 100–110 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Cole, J.L. Activation of PKR: an open and shut case? Trends Biochem. Sci. 32, 57–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Pine, R., Levy, D.E., Reich, N. & Darnell, J.E., Jr. Transcriptional stimulation by CaPO4-DNA precipitates. Nucleic Acids Res. 16, 1371–1378 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Paladino, P., Cummings, D.T., Noyce, R.S. & Mossman, K.L. The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I. J. Immunol. 177, 8008–8016 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Rahman, M.M. & McFadden, G. Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog. 2, e4 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Stack, J. et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J. Exp. Med. 201, 1007–1018 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Maloney, G., Schroder, M. & Bowie, A.G. Vaccinia virus protein A52R activates p38 mitogen-activated protein kinase and potentiates lipopolysaccharide-induced interleukin-10. J. Biol. Chem. 280, 30838–30844 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Redpath, S., Ghazal, P. & Gascoigne, N.R. Hijacking and exploitation of IL-10 by intracellular pathogens. Trends Microbiol. 9, 86–92 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Blackburn, S.D. & Wherry, E.J. IL-10, T cell exhaustion and viral persistence. Trends Microbiol. 15, 143–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Cooray, S. et al. Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. J. Gen. Virol. 88, 1656–1666 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Thorley-Lawson, D.A. & Gross, A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N. Engl. J. Med. 350, 1328–1337 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Palmer, L.E., Hobbie, S., Galan, J.E. & Bliska, J.B. YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-α production and downregulation of the MAP kinases p38 and JNK. Mol. Microbiol. 27, 953–965 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Orth, K. et al. Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285, 1920–1923 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Orth, K. et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594–1597 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Palmer, L.E., Pancetti, A.R., Greenberg, S. & Bliska, J.B. YopJ of Yersinia spp. is sufficient to cause downregulation of multiple mitogen-activated protein kinases in eukaryotic cells. Infect. Immun. 67, 708–716 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mittal, R., Peak-Chew, S.Y. & McMahon, H.T. Acetylation of MEK2 and IκB kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl. Acad. Sci. USA 103, 18574–18579 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mukherjee, S. et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312, 1211–1214 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Gurlebeck, D., Thieme, F. & Bonas, U. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J. Plant Physiol. 163, 233–255 (2006).

    Article  PubMed  CAS  Google Scholar 

  117. Mukherjee, S., Hao, Y.H. & Orth, K. A newly discovered post-translational modification–the acetylation of serine and threonine residues. Trends Biochem. Sci. 32, 210–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Zhou, H. et al. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-kappa B activation. J. Exp. Med. 202, 1327–1332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sweet, C.R., Conlon, J., Golenbock, D.T., Goguen, J. & Silverman, N. YopJ targets TRAF proteins to inhibit TLR-mediated NF-κB, MAPK and IRF3 signal transduction. Cell Microbiol. 9, 2700–2715 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Ciesiolka, L.D. et al. Regulation of expression of avirulence gene avrRxv and identification of a family of host interaction factors by sequence analysis of avrBsT. Mol. Plant Microbe Interact. 12, 35–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Belkhadir, Y., Subramaniam, R. & Dangl, J.L. Plant disease resistance protein signaling: NBS-LRR proteins and their partners. Curr. Opin. Plant Biol. 7, 391–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Cunnac, S. et al. A conserved carboxylesterase is a suppressor of avrBsT-elicited resistance in Arabidopsis. Plant Cell 19, 688–705 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Arbibe, L. et al. An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nat. Immunol. 8, 47–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  124. Zurawski, D.V., Mitsuhata, C., Mumy, K.L., McCormick, B.A. & Maurelli, A.T. OspF and OspC1 are Shigella flexneri type III secretion system effectors that are required for postinvasion aspects of virulence. Infect. Immun. 74, 5964–5976 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Li, H. et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science 315, 1000–1003 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Kramer, R.W. et al. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation. PLoS Pathog. 3, e21 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Holbourn, K.P., Shone, C.C. & Acharya, K.R. A family of killer toxins. Exploring the mechanism of ADP-ribosylating toxins. FEBS J. 273, 4579–4593 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Barbieri, J.T., Riese, M.J. & Aktories, K. Bacterial toxins that modify the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 18, 315–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Yates, S.P., Jorgensen, R., Andersen, G.R. & Merrill, A.R. Stealth and mimicry by deadly bacterial toxins. Trends Biochem. Sci. 31, 123–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Nougayrede, J.P., Taieb, F., De Rycke, J. & Oswald, E. Cyclomodulins: bacterial effectors that modulate the eukaryotic cell cycle. Trends Microbiol. 13, 103–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Collier, R.J. & Young, J.A. Anthrax toxin. Annu. Rev. Cell Dev. Biol. 19, 45–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Baldari, C.T., Tonello, F., Paccani, S.R. & Montecucco, C. Anthrax toxins: A paradigm of bacterial immune suppression. Trends Immunol. 27, 434–440 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Duesbery, N.S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Agrawal, A. et al. Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature 424, 329–334 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Park, J.M., Greten, F.R., Li, Z.W. & Karin, M. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048–2051 (2002).

    Article  CAS  PubMed  Google Scholar 

  136. Boyden, E.D. & Dietrich, W.F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38, 240–244 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Craig R Roy or Edward S Mocarski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, C., Mocarski, E. Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 8, 1179–1187 (2007). https://doi.org/10.1038/ni1528

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing