Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR

Abstract

T cell immunity requires the long-term survival of T cells that are capable of recognizing self antigens but are not overtly autoreactive. How this balance is achieved remains incompletely understood. Here we identify a homeostatic mechanism that transcriptionally tailors CD8 coreceptor expression in individual CD8+ T cells to the self-specificity of their clonotypic T cell receptor (TCR). 'Coreceptor tuning' results from interplay between cytokine and TCR signals, such that signals from interleukin 7 and other common γ-chain cytokines transcriptionally increase CD8 expression and thereby promote TCR engagement of self ligands, whereas TCR signals impair common γ-chain cytokine signaling and thereby decrease CD8 expression. This dynamic interplay induces individual CD8+ T cells to express CD8 in quantities appropriate for the self-specificity of their TCR, promoting the engagement of self ligands, yet avoiding autoreactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of CD8 expression on mature CD8+ T cells.
Figure 2: IL-7 upregulates Cd8a transcription.
Figure 3: CD8 upregulation by γc cytokines.
Figure 4: Molecular basis for the low CD8 expression on T cells from HY male mice.
Figure 5: Persistent TCR engagement blocks γc cytokine signaling and suppresses CD8 expression in T cells from HY male mice.
Figure 6: Inverse correlation of TCR signaling intensity and CD8 expression in vivo.
Figure 7: Effect of homeostatic TCR signals on IL-7 signaling and CD8 expression in vivo.
Figure 8: Coreceptor tuning and CD8+ T cell autoreactivity.

Similar content being viewed by others

References

  1. Ernst, B., Lee, D.S., Chang, J.M., Sprent, J. & Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Kirberg, J., Berns, A. & von Boehmer, H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med. 186, 1269–1275 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Surh, C.D. & Sprent, J. Regulation of mature T cell homeostasis. Semin. Immunol. 17, 183–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Tan, J.T. et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc. Natl. Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tanchot, C., Lemonnier, F.A., Perarnau, B., Freitas, A.A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Jiang, Q. et al. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev. 16, 513–533 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Park, J.H. et al. Suppression of IL7Rα transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Immunity 21, 289–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Geiselhart, L.A. et al. IL-7 administration alters the CD4:CD8 ratio, increases T cell numbers, and increases T cell function in the absence of activation. J. Immunol. 166, 3019–3027 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Goldrath, A.W. & Bevan, M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kieper, W.C., Burghardt, J.T. & Surh, C.D. A role for TCR affinity in regulating naive T cell homeostasis. J. Immunol. 172, 40–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Marquez, M.E. et al. CD8 T cell sensory adaptation dependent on TCR avidity for self-antigens. J. Immunol. 175, 7388–7397 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Holler, P.D. & Kranz, D.M. Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity 18, 255–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Maile, R. et al. Peripheral “CD8 tuning” dynamically modulates the size and responsiveness of an antigen-specific T cell pool in vivo. J. Immunol. 174, 619–627 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Sarafova, S.D. et al. Modulation of coreceptor transcription during positive selection dictates lineage fate independently of TCR/coreceptor specificity. Immunity 23, 75–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Teh, H.S., Kishi, H., Scott, B. & Von Boehmer, H. Deletion of autospecific T cells in T cell receptor (TCR) transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules. J. Exp. Med. 169, 795–806 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Robey, E.A. et al. A self-reactive T cell population that is not subject to negative selection. Int. Immunol. 4, 969–974 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Rathmell, J.C., Farkash, E.A., Gao, W. & Thompson, C.B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Teague, T.K., Marrack, P., Kappler, J.W. & Vella, A.T. IL-6 rescues resting mouse T cells from apoptosis. J. Immunol. 158, 5791–5796 (1997).

    CAS  PubMed  Google Scholar 

  20. Yu, Q., Erman, B., Bhandoola, A., Sharrow, S.O. & Singer, A. In vitro evidence that cytokine receptor signals are required for differentiation of double positive thymocytes into functionally mature CD8+ T cells. J. Exp. Med. 197, 475–487 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Gorman, S.D., Sun, Y.H., Zamoyska, R. & Parnes, J.R. Molecular linkage of the Ly-3 and Ly-2 genes. Requirement of Ly-2 for Ly-3 surface expression. J. Immunol. 140, 3646–3653 (1988).

    CAS  PubMed  Google Scholar 

  23. Hennecke, S. & Cosson, P. Role of transmembrane domains in assembly and intracellular transport of the CD8 molecule. J. Biol. Chem. 268, 26607–26612 (1993).

    CAS  PubMed  Google Scholar 

  24. Suzuki, H., Punt, J.A., Granger, L.G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity 2, 413–425 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Ellmeier, W., Sunshine, M.J., Losos, K. & Littman, D.R. Multiple developmental stage-specific enhancers regulate CD8 expression in developing thymocytes and in thymus-independent T cells. Immunity 9, 485–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Hostert, A. et al. A CD8 genomic fragment that directs subset-specific expression of CD8 in transgenic mice. J. Immunol. 158, 4270–4281 (1997).

    CAS  PubMed  Google Scholar 

  27. Hostert, A. et al. Hierarchical interactions of control elements determine CD8alpha gene expression in subsets of thymocytes and peripheral T cells. Immunity 9, 497–508 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Kioussis, D. & Ellmeier, W. Chromatin and CD4, CD8A and CD8B gene expression during thymic differentiation. Nat. Rev. Immunol. 2, 909–919 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, X.L. et al. Distinct stage-specific cis-active transcriptional mechanisms control expression of T cell coreceptor CD8 alpha at double- and single-positive stages of thymic development. J. Immunol. 161, 2254–2266 (1998).

    CAS  PubMed  Google Scholar 

  30. Ellmeier, W., Sunshine, M.J., Losos, K., Hatam, F. & Littman, D.R. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity 7, 537–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Depper, J.M. et al. Interleukin 2 (IL-2) augments transcription of the IL-2 receptor gene. Proc. Natl. Acad. Sci. USA 82, 4230–4234 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nelms, K., Keegan, A.D., Zamorano, J., Ryan, J.J. & Paul, W.E. The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Cui, Y. et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol. Cell. Biol. 24, 8037–8047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kovanen, P.E. & Leonard, W.J. Cytokines and immunodeficiency diseases: critical roles of the γc-dependent cytokines interleukins 2, 4, 7, 9, 15, and 21, and their signaling pathways. Immunol. Rev. 202, 67–83 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Ehret, G.B. et al. DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J. Biol. Chem. 276, 6675–6688 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Teh, H.S. et al. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233 (1988).

    Article  CAS  PubMed  Google Scholar 

  37. Lischke, A. et al. The interleukin-4 receptor activates STAT5 by a mechanism that relies upon common γ-chain. J. Biol. Chem. 273, 31222–31229 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Mamalaki, C. et al. Positive and negative selection in transgenic mice expressing a T-cell receptor specific for influenza nucleoprotein and endogenous superantigen. Dev. Immunol. 3, 159–174 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sha, W.C. et al. Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature 336, 73–76 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Feik, N. et al. Functional and molecular analysis of the double-positive stage-specific CD8 enhancer E8III during thymocyte development. J. Immunol. 174, 1513–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Erman, B. et al. Coreceptor signal strength regulates positive selection but does not determine CD4/CD8 lineage choice in a physiologic in vivo model. J. Immunol. 177, 6613–6625 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Mandelbrot, D.A. et al. B7-dependent T-cell costimulation in mice lacking CD28 and CTLA4. J. Clin. Invest. 107, 881–887 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Tai, X., Van Laethem, F., Sharpe, A.H. & Singer, A. Induction of autoimmune disease in CTLA-4−/− mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc. Natl. Acad. Sci. USA 104, 13756–13761 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guimond, M., Fry, T.J. & Mackall, C.L. Cytokine signals in T-cell homeostasis. J. Immunother. 28, 289–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Grossman, Z. & Paul, W.E. Adaptive cellular interactions in the immune system: the tunable activation threshold and the significance of subthreshold responses. Proc. Natl. Acad. Sci. USA 89, 10365–10369 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grossman, Z. & Singer, A. Tuning of activation thresholds explains flexibility in the selection and development of T cells in the thymus. Proc. Natl. Acad. Sci. USA 93, 14747–14752 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bosselut, R., Guinter, T.I., Sharrow, S.O. & Singer, A. Unraveling a revealing paradox: Why major histocompatibility complex I-signaled thymocytes “paradoxically” appear as CD4+8lo transitional cells during positive selection of CD8+ T cells. J. Exp. Med. 197, 1709–1719 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kaldjian, E. et al. Nonequivalent effects of PKC activation by PMA on murine CD4 and CD8 cell-surface expression. FASEB J. 2, 2801–2806 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. McCarthy, S.A., Kaldjian, E. & Singer, A. Induction of anti-CD8 resistant cytotoxic T lymphocytes by anti-CD8 antibodies. Functional evidence for T cell signaling induced by multi-valent cross-linking of CD8 on precursor cells. J. Immunol. 141, 3737–3746 (1988).

    CAS  PubMed  Google Scholar 

  51. Wiest, D.L. et al. Regulation of T cell receptor expression in immature CD4+CD8+ thymocytes by p56lck tyrosine kinase: basis for differential signaling by CD4 and CD8 in immature thymocytes expressing both coreceptor molecules. J. Exp. Med. 178, 1701–1712 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Bilic, I. et al. Negative regulation of CD8 expression via Cd8 enhancer-mediated recruitment of the zinc finger protein MAZR. Nat. Immunol. 7, 392–400 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hostert, A. et al. A region in the CD8 gene locus that directs expression to the mature CD8 T cell subset in transgenic mice. Immunity 7, 525–536 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Noguchi, M. et al. Functional cleavage of the common cytokine receptor γ chain (γc) by calpain. Proc. Natl. Acad. Sci. USA 94, 11534–11539 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu, J. et al. Transient inhibition of interleukin 4 signaling by T cell receptor ligation. J. Exp. Med. 192, 1125–1134 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xue, H.H. et al. IL-2 negatively regulates IL-7 receptor α chain expression in activated T lymphocytes. Proc. Natl. Acad. Sci. USA 99, 13759–13764 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Singer, A. New perspectives on a developmental dilemma: the kinetic signaling model and the importance of signal duration for the CD4/CD8 lineage decision. Curr. Opin. Immunol. 14, 207–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Singer, A. & Bosselut, R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv. Immunol. 83, 91–131 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Bosselut, R., Feigenbaum, L., Sharrow, S.O. & Singer, A. Strength of signaling by CD4 and CD8 coreceptor tails determines the number but not the lineage direction of positively selected thymocytes. Immunity 14, 483–494 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Gress, R. Hodes, S. Sharrow, N. Taylor, and T. Waldmann for critically reading the manuscript; S. Sharrow, T. Adams and L. Granger for flow cytometry; and Z. Grossman for discussions. Il7−/− mice were provided by the DNAX Research Institute, HY Rag2−/− mice were provided by M. Vacchio (National Institutes of Health), and Ctla4−/−Cd28−/− and Ctla4−/−Cd28+/− mice were provided by A. Sharpe (Harvard Medical School). Supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

J.-H.P. conceptualized the research, did experiments, analyzed data and contributed to the writing of the manuscript; S.A., P.J.L, S.D.S. and L.L.D. did experiments and analyzed data; A.S.A. and B.E. constructed some of the experimental mice; X.L. and R.B. provided data; W.E. provided materials; L.F. generated transgenic mice; and A.S. conceptualized the research, directed the study, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Alfred Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JH., Adoro, S., Lucas, P. et al. 'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat Immunol 8, 1049–1059 (2007). https://doi.org/10.1038/ni1512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing