Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allelic 'choice' governs somatic hypermutation in vivo at the immunoglobulin κ-chain locus

Abstract

Monoallelic demethylation and rearrangement control allelic exclusion of the immunoglobulin κ-chain locus (Igk locus) in B cells. Here, through the introduction of pre-rearranged Igk genes into their physiological position, the critical rearrangement step was bypassed, thereby generating mice producing B cells simultaneously expressing two different immunoglobulin-κ light chains. Such 'double-expressing' B cells still underwent monoallelic demethylation at the Igk locus, and the demethylated allele was the 'preferred' substrate for somatic hypermutation in each cell. However, methylation itself did not directly inhibit the activation-induced cytidine-deaminase reaction in vitro. Thus, it seems that the epigenetic mechanisms that initially bring about monoallelic variable-(diversity)-joining rearrangement continue to be involved in the control of antibody diversity at later stages of B cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of splenic lymphocytes.
Figure 2: Methylation analyses of 'double-targeted' mice.
Figure 3: Mutation analysis.
Figure 4: DNA-methylation and expression analyses of Peyer's patch B cells.

Similar content being viewed by others

References

  1. Mostoslavsky, R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221–225 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Goldmit, M. et al. Epigenetic ontogeny of the κ locus during B cell development. Nat. Immunol. 6, 198–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Goldmit, M., Schlissel, M., Cedar, H. & Bergman, Y. Differential accessibility at the kappa chain locus plays a role in allelic exclusion. EMBO J. 21, 5255–5261 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mostoslavsky, R. κ chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801–1811 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mostoslavsky, R., Alt, F.W. & Rajewsky, K. The lingering enigma of the allelic exclusion mechanism. Cell 118, 539–544 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Gay, D., Saunders, T., Camper, S. & Weigert, M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177, 999–1008 (1993).

    CAS  PubMed  Google Scholar 

  7. Tiegs, S.L., Russell, D.M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

    CAS  PubMed  Google Scholar 

  8. Di Noia, J.M. & Neuberger, M.S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. advance online publication, 28 February 2007 (10.1146/annurev.biochem.76.061705.090740).

  9. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Bransteitter, R., Pham, P., Scharff, M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gorski, J., Rollini, P. & Mach, B. Somatic mutations of immunoglobulin variable genes are restricted to the rearranged V gene. Science 220, 1179–1181 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Pech, M., Hochtl, J., Schnell, H. & Zachau, H.G. Differences between germ-line and rearranged immunoglobulin Vκ coding sequences suggest a localized mutation mechanism. Nature 291, 668–670 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. Roes, J., Huppi, K., Rajewsky, K. & Sablitzky, F. V gene rearrangement is required to fully activate the hypermutation mechanism in B cells. J. Immunol. 142, 1022–1026 (1989).

    CAS  PubMed  Google Scholar 

  16. Lebecque, S.G. & Gearhart, P.J. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5′ boundary is near the promoter, and 3′ boundary is approximately 1 kb from V(D)J gene. J. Exp. Med. 172, 1717–1727 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Bross, L., Muramatsu, M., Kinoshita, K., Honjo, T. & Jacobs, H. DNA double-strand breaks: prior to but not sufficient in targeting hypermutation. J. Exp. Med. 195, 1187–1192 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peters, A. & Storb, U. Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4, 57–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Fukita, Y., Jacobs, H. & Rajewsky, K. Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 9, 105–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Jolly, C.J. & Neuberger, M.S. Somatic hypermutation of immunoglobulin κ transgenes: Association of mutability with demethylation. Immunol. Cell Biol. 79, 18–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Woo, C.J., Martin, A. & Scharff, M.D. Induction of somatic hypermutation is associated with modifications in immunoglobulin variable region chromatin. Immunity 19, 479–489 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Odegard, V.H., Kim, S.T., Anderson, S.M., Shlomchik, M.J. & Schatz, D.G. Histone modifications associated with somatic hypermutation. Immunity 23, 101–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Betz, A.G. et al. Elements regulating somatic hypermutation of an immunoglobulin κ gene: critical role for the intron enhancer/matrix attachment region. Cell 77, 239–248 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Inlay, M., Alt, F.W., Baltimore, D. & Xu, Y. Essential roles of the κ light chain intronic enhancer and 3′ enhancer in κ rearrangement and demethylation. Nat. Immunol. 3, 463–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Pelanda, R., Schaal, S., Torres, R.M. & Rajewsky, K. A prematurely expressed Igκ transgene, but not a VκJκ gene segment targeted into the Igκ locus, can rescue B cell development in λ5-deficient mice. Immunity 5, 229–239 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Sonoda, E. et al. B cell development under the condition of allelic inclusion. Immunity 6, 225–233 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Baccala, R., Quang, T.V., Gilbert, M., Ternynck, T. & Avrameas, S. Two murine natural polyreactive autoantibodies are encoded by nonmutated germ-line genes. Proc. Natl. Acad. Sci. USA 86, 4624–4628 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Novobrantseva, T. et al. Stochastic pairing of Ig heavy and light chains frequently generates B cell antigen receptors that are subject to editing in vivo. Int. Immunol. 17, 343–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Schwenk, F., Baon, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gerdes, T. & Wabl, M. Autoreactivity and allelic inclusion in a B cell nuclear transfer mouse. Nat. Immunol. 5, 1282–1287 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Pelanda, R. et al. Receptor editing in a transgenic mouse model: site, efficiency, and role in B cell tolerance and antibody diversification. Immunity 7, 765–775 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Pewzner-Jung, Y. et al. B cell deletion, anergy, and receptor editing in “knock in” mice targeted with a germline-encoded or somatically mutated anti-DNA heavy chain. J. Immunol. 161, 4634–4645 (1998).

    CAS  PubMed  Google Scholar 

  33. Singh, N., Bergman, Y., Cedar, H. & Chess, A. Biallelic germline transcription at the κ immunoglobulin locus. J. Exp. Med. 197, 743–750 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Skok, J.A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2, 848–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Liang, H.-E., Hsu, L.-Y., Cado, D. & Schlissel, M.S. Variegated transcriptional activation of the immunoglobulin κ locus in pre-B cells contributes to the allelic exclusion of light-chain expression. Cell 118, 19–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Casellas, R. et al. Contribution of receptor editing to the antibody repertoire. Science 291, 1541–1544 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, S.Y., Fugmann, S.D. & Schatz, D.G. Control of gene conversion and somatic hypermutation by immunoglobulin promoter and enhancer sequences. J. Exp. Med. 203, 2919–2928 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weber, J.S., Berry, J., Litwin, S. & Claflin, J.L. Somatic hypermutation of the JC intron is markedly reduced in unrearranged kappa and H alleles and is unevenly distributed in rearranged alleles. J. Immunol. 146, 3218–3226 (1991).

    CAS  PubMed  Google Scholar 

  39. Larijani, M. et al. Methylation protects cytidines from AID-mediated deamination. Mol. Immunol. 42, 599–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, T. et al. Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat. Genet. 39, 391–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Bergman, Y., Fisher, A.G. & Cedar, H. Epigenetic mechanisms that regulate antigen receptor gene expression. Curr. Opin. Immunol. 15, 176–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Torres, R. & Kuhn, R. Laboratory Protocols for Conditional Gene Targeting (Oxford University Press, Oxford, 1997).

    Google Scholar 

  44. Zou, Y.R., Gu, H. & Rajewski, K. Generation of a mouse strain that produces immunoglobulin κ chains with human constant regions. Science 262, 1271–1274 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Forster, I., Vieira, P. & Rajewsky, K. Flow cytometric analysis of cell proliferation dynamics in the B cell compartment of the mouse. Int. Immunol. 1, 321–331 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Rolink, A.G., Andersson, J. & Melchers, F. Characterization of immature B cells by a novel monoclonal antibody, by turnover and by mitogen reactivity. Eur. J. Immunol. 28, 3738–3748 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Miltenyi, S., Muller, W., Weichel, W. & Radbruch, A. High gradient magnetic cell separation with MACS. Cytometry 11, 231–238 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. Hajkova, P. et al. DNA-methylation analysis by the bisulfite-assisted genomic sequencing method. Methods Mol. Biol. 200, 143–154 (2002).

    CAS  PubMed  Google Scholar 

  49. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F. & Higgins, D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Keshet for experimental assistance, S. Casola for scientific advice and cell sorting; C. Goettlinger for cell sorting; C. Koenigs, C. Uthoff-Hachenberg and A. Egert for technical help; R. Grützmann (University of Cologne) for anti–mouse κ (R33-18.10) and anti-IgM (R33-24.12). Supported by the National Institutes of Health (H.C., K.R. and Y.B.), the Israel Academy of Sciences (Y.B), the German Israel Foundation (Y.B.), the European Community 5th Framework Quality of Life Program (Y.B.), the Israel Cancer Research Fund (H.C.) and the Volkswagen Foundation (K.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehudit Bergman.

Ethics declarations

Competing interests

T.I.N. is an employee of Alnylam Pharmaceuticals and G.E. is an employee of Artemis Pharmaceuticals.

Supplementary information

Supplementary Fig. 1

Generation of the 3-38hCκ and D23mCκ alleles. (PDF 578 kb)

Supplementary Fig. 2

IgM titers in the serum of WT and mutant mice. (PDF 2137 kb)

Supplementary Fig. 3

Flow cytometric analysis of bone marrow lymphocytes. (PDF 1072 kb)

Supplementary Fig. 4

Bisulfite mutation analysis of methylated 3-83 V region molecules. (PDF 838 kb)

Supplementary Fig. 5

CpG methylation does not inhibit AID deamination of flanking Cs. (PDF 2653 kb)

Supplementary Fig. 6

Flow cytometric analyses of splenic lymphocytes from 4-week-old WT:CκT and D23ki:CκT mice. (PDF 509 kb)

Supplementary Table 1

Base exchange pattern of hypermutation. (PDF 10 kb)

Supplementary Table 2

Primer sequences. (PDF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraenkel, S., Mostoslavsky, R., Novobrantseva, T. et al. Allelic 'choice' governs somatic hypermutation in vivo at the immunoglobulin κ-chain locus. Nat Immunol 8, 715–722 (2007). https://doi.org/10.1038/ni1476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing