Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Patterns of nonclassical MHC antigen presentation

Abstract

The identification of pattern-recognition receptors that selectively respond to evolutionarily conserved chemical (often pathogen-derived) moieties has provided key insight into how innate immune cells facilitate rapid and relatively specific antimicrobial immune activity. In contrast, relatively slower adaptive immune responses rely on T cell clonal expansion that develops in response to variable peptides bound to the groove of classical major histocompatibility complex (MHC) proteins. For certain nonclassical 'MHC-like' class Ib proteins, such as H2-M3 and CD1d, their respective binding grooves seem to have been adapted to present to T cells unique molecular patterns analogous to those involved in innate signaling. Here we propose that another MHC class Ib protein, MR1, which is required for the gut flora–dependent development of mucosa-associated invariant T cells, presents either a microbe-produced or a microbe-induced pattern.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural relationship of MHC class Ia and class Ib α1-α2 domains.

Similar content being viewed by others

References

  1. Colmone, A. & Wang, C.R. H2–M3-restricted T cell response to infection. Microbes Infect. 8, 2277–2283 (2006).

    Article  CAS  Google Scholar 

  2. Kinjo, Y. & Kronenberg, M. Vα14i NKT cells are innate lymphocytes that participate in the immune response to diverse microbes. J. Clin. Immunol. 25, 522–533 (2005).

    Article  CAS  Google Scholar 

  3. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  Google Scholar 

  4. Ploss, A., Tran, A., Menet, E., Leiner, I. & Pamer, E.G. Cross-recognition of N-formylmethionine peptides is a general characteristic of H2–M3-restricted CD8+ T cells. Infect. Immun. 73, 4423–4426 (2005).

    Article  CAS  Google Scholar 

  5. Brutkiewicz, R.R. CD1d ligands: the good, the bad, and the ugly. J. Immunol. 177, 769–775 (2006).

    Article  CAS  Google Scholar 

  6. Hashimoto, K., Hirai, M. & Kurosawa, Y. A gene outside the human MHC related to classical HLA class I genes. Science 269, 693–695 (1995).

    Article  CAS  Google Scholar 

  7. Shiina, T. et al. Genomic anatomy of a premier major histocompatibility complex paralogous region on chromosome 1q21-q22. Genome Res. 11, 789–802 (2001).

    Article  CAS  Google Scholar 

  8. Riegert, P., Wanner, V. & Bahram, S. Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J. Immunol. 161, 4066–4077 (1998).

    CAS  PubMed  Google Scholar 

  9. Yamaguchi, H., Hirai, M., Kurosawa, Y. & Hashimoto, K. A highly conserved major histocompatibility complex class I-related gene in mammals. Biochem. Biophys. Res. Commun. 238, 697–702 (1997).

    Article  CAS  Google Scholar 

  10. Walter, L. & Gunther, E. Isolation and molecular characterization of the rat MR1 homologue, a non-MHC-linked class I-related gene. Immunogenetics 47, 477–482 (1998).

    Article  CAS  Google Scholar 

  11. Parra-Cuadrado, J.F. et al. A study on the polymorphism of human MHC class I-related MR1 gene and identification of an MR1-like pseudogene. Tissue Antigens 56, 170–172 (2000).

    Article  CAS  Google Scholar 

  12. Yamaguchi, H., Kurosawa, Y. & Hashimoto, K. Expanded genomic organization of conserved mammalian MHC class I-related genes, human MR1 and its murine ortholog. Biochem. Biophys. Res. Commun. 250, 558–564 (1998).

    Article  CAS  Google Scholar 

  13. Hughes, A.L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170 (1988).

    Article  CAS  Google Scholar 

  14. Wang, C.R., Lambracht, D., Wonigeit, K., Howard, J.C. & Lindahl, K.F. Rat RT1 orthologs of mouse H2-M class Ib genes. Immunogenetics 42, 63–67 (1995).

    Article  CAS  Google Scholar 

  15. Doyle, C.K., Davis, B.K., Cook, R.G., Rich, R.R. & Rodgers, J.R. Hyperconservation of the N-formyl peptide binding site of M3: evidence that M3 is an old eutherian molecule with conserved recognition of a pathogen-associated molecular pattern. J. Immunol. 171, 836–844 (2003).

    Article  CAS  Google Scholar 

  16. Miller, M.M. et al. Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc. Natl. Acad. Sci. USA 102, 8674–8679 (2005).

    Article  CAS  Google Scholar 

  17. Miley, M.J. et al. Biochemical features of the MHC-related protein 1 consistent with an immunological function. J. Immunol. 170, 6090–6098 (2003).

    Article  CAS  Google Scholar 

  18. Yamaguchi, H. & Hashimoto, K. Association of MR1 protein, an MHC class I-related molecule, with β2-microglobulin. Biochem. Biophys. Res. Commun. 290, 722–729 (2002).

    Article  CAS  Google Scholar 

  19. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  CAS  Google Scholar 

  20. Chiu, N.M., Chun, T., Fay, M., Mandal, M. & Wang, C.R. The majority of H2–M3 is retained intracellularly in a peptide-receptive state and traffics to the cell surface in the presence of N-formylated peptides. J. Exp. Med. 190, 423–434 (1999).

    Article  CAS  Google Scholar 

  21. Zwickey, H.L. & Potter, T.A. Antigen secreted from noncytosolic Listeria monocytogenes is processed by the classical MHC class I processing pathway. J. Immunol. 162, 6341–6350 (1999).

    CAS  PubMed  Google Scholar 

  22. Chun, T. et al. Functional roles of TAP and tapasin in the assembly of M3-N-formylated peptide complexes. J. Immunol. 167, 1507–1514 (2001).

    Article  CAS  Google Scholar 

  23. Tilloy, F. et al. An invariant T cell receptor α chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted α/β T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

    Article  CAS  Google Scholar 

  24. Treiner, E. et al. Mucosal-associated invariant T (MAIT) cells: an evolutionarily conserved T cell subset. Microbes Infect. 7, 552–559 (2005).

    Article  CAS  Google Scholar 

  25. Yoshimoto, T. & Paul, W.E. CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 179, 1285–1295 (1994).

    Article  CAS  Google Scholar 

  26. Stetson, D.B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198, 1069–1076 (2003).

    Article  CAS  Google Scholar 

  27. Treiner, E. & Lantz, O. CD1d- and MR1-restricted invariant T cells: of mice and men. Curr. Opin. Immunol. 18, 519–526 (2006).

    Article  CAS  Google Scholar 

  28. Kawachi, I., Maldonado, J., Strader, C. & Gilfillan, S. MR1-restricted Vα19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. J. Immunol. 176, 1618–1627 (2006).

    Article  CAS  Google Scholar 

  29. Croxford, J.L., Miyake, S., Huang, Y.Y., Shimamura, M. & Yamamura, T. Invariant Vα19i T cells regulate autoimmune inflammation. Nat. Immunol. 7, 987–994 (2006).

    Article  CAS  Google Scholar 

  30. Shimamura, M. & Huang, Y.Y. Presence of a novel subset of NKT cells bearing an invariant Vα19.1-Jα26 TCR α chain. FEBS Lett. 516, 97–100 (2002).

    Article  CAS  Google Scholar 

  31. Xu, H., Chun, T., Choi, H.J., Wang, B. & Wang, C.R. Impaired response to Listeria in H2–M3-deficient mice reveals a nonredundant role of MHC class Ib-specific T cells in host defense. J. Exp. Med. 203, 449–459 (2006).

    Article  Google Scholar 

  32. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    Article  CAS  Google Scholar 

  33. Urdahl, K.B., Sun, J.C. & Bevan, M.J. Positive selection of MHC class Ib-restricted CD8+ T cells on hematopoietic cells. Nat. Immunol. 3, 772–779 (2002).

    Article  CAS  Google Scholar 

  34. Cannarile, M.A., Decanis, N., van Meerwijk, J.P. & Brocker, T. The role of dendritic cells in selection of classical and nonclassical CD8+ T cells in vivo. J. Immunol. 173, 4799–4805 (2004).

    Article  CAS  Google Scholar 

  35. Lodoen, M.B. & Lanier, L.L. Viral modulation of NK cell immunity. Nat. Rev. Microbiol. 3, 59–69 (2005).

    Article  CAS  Google Scholar 

  36. Gasser, S. & Raulet, D.H. Activation and self-tolerance of natural killer cells. Immunol. Rev. 214, 130–142 (2006).

    Article  CAS  Google Scholar 

  37. Kelley, L.A., MacCallum, R.M. & Sternberg, M.J. Enhanced genome annotation using structural profiles in the program 3D-PSSM. J. Mol. Biol. 299, 499–520 (2000).

    Article  CAS  Google Scholar 

  38. O'Callaghan, C.A. et al. Structural features impose tight peptide binding specificity in the nonclassical MHC molecule HLA-E. Mol. Cell 1, 531–541 (1998).

    Article  CAS  Google Scholar 

  39. Wang, C.R., Lindahl, K.F. & Deisenhofer, J. Crystal structure of the MHC class Ib molecule H2–M3. Res. Immunol. 147, 313–321 (1996).

    Article  CAS  Google Scholar 

  40. Sanchez, L.M., Chirino, A.J. & Bjorkman, P. Crystal structure of human ZAG, a fat-depleting factor related to MHC molecules. Science 283, 1914–1919 (1999).

    Article  CAS  Google Scholar 

  41. Okamoto, N. et al. Synthetic α-mannosyl ceramide as a potent stimulant for an NKT cell repertoire bearing the invariant Vα19-Jα26 TCR α chain. Chem. Biol. 12, 677–683 (2005).

    Article  CAS  Google Scholar 

  42. Koch, M. et al. The crystal structure of human CD1d with and without α-galactosylceramide. Nat. Immunol. 6, 819–826 (2005).

    Article  CAS  Google Scholar 

  43. Huang, S. et al. Evidence for MR1 antigen presentation to mucosal-associated invariant T cells. J. Biol. Chem. 280, 21183–21193 (2005).

    Article  CAS  Google Scholar 

  44. Jayawardena-Wolf, J., Benlagha, K., Chiu, Y.H., Mehr, R. & Bendelac, A. CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15, 897–908 (2001).

    Article  CAS  Google Scholar 

  45. Illes, Z., Shimamura, M., Newcombe, J., Oka, N. & Yamamura, T. Accumulation of Vα7.2-Jα33 invariant T cells in human autoimmune inflammatory lesions in the nervous system. Int. Immunol. 16, 223–230 (2004).

    Article  CAS  Google Scholar 

  46. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  47. Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G. & Gibson, T.J. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403–405 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Gilfillan for discussions and M. Miley for help with computational studies. Supported by the National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, T., Huang, S., Arnold, P. et al. Patterns of nonclassical MHC antigen presentation. Nat Immunol 8, 563–568 (2007). https://doi.org/10.1038/ni1475

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing