Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit

Abstract

Activation of transcription factor NF-κB in the innate immune system is tightly regulated to prevent excessive inflammatory responses. How NF-κB activation is terminated, however, is not fully understood. Here we report that PDLIM2 negatively regulated NF-κB activity, acting as a nuclear ubiquitin E3 ligase targeting the p65 subunit of NF-κB. PDLIM2 bound to p65 and promoted p65 polyubiquitination. In addition, PDLIM2 targeted p65 to discrete intranuclear compartments where polyubiquitinated p65 was degraded by the proteasome. PDLIM2 deficiency resulted in larger amounts of nuclear p65, defective p65 ubiquitination and augmented production of proinflammatory cytokines in response to innate stimuli. Our findings delineate a pathway by which PDLIM2 terminates NF-κB activation through intranuclear sequestration and subsequent degradation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubiquitin- and proteasome-dependent degradation of endogenous p65.
Figure 2: PDLIM2 binds to and polyubiquitinates p65 and negatively regulates NF-κB-mediated transcription.
Figure 3: PDLIM2 targets p65 to insoluble nuclear compartments, where p65 is degraded by the proteasome.
Figure 4: PDLIM2 promotes the intranuclear translocation of nuclear p65 into PML nuclear bodies by means of its PDZ domain.
Figure 5: Enhanced p65 activation in Pdlim2−/− mice.

Similar content being viewed by others

References

  1. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  Google Scholar 

  2. Hayden, M.S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004).

    Article  CAS  Google Scholar 

  3. Yamamoto, Y. & Gaynor, R.B. Role of NF-κB pathway in the pathogenesis of human diseases states. Curr. Mol. Med. 1, 287–296 (2001).

    Article  CAS  Google Scholar 

  4. Tak, P.P. & Firestaein, G.S. NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7–11 (2001).

    Article  CAS  Google Scholar 

  5. Arenzana-Seisdedos, F. et al. Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcriptional activities of NF-κB. Mol. Cell. Biol. 15, 2689–2696 (1995).

    Article  CAS  Google Scholar 

  6. Arenzana-Seisdedos, F. et al. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J. Cell Sci. 110, 369–378 (1997).

    CAS  PubMed  Google Scholar 

  7. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell, 109, S81–S96 (2001).

    Article  Google Scholar 

  8. Saccani, S., Marazzi, I., Beg, A.A. & Natoli, G. Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor κB response. J. Exp. Med. 200, 107–113 (2004).

    Article  CAS  Google Scholar 

  9. Muratani, M. & Tansey, W.P. How the ubiquitin-proteasome system controls transcription. Nat. Rev. Mol. Cell Biol. 4, 192–201 (2003).

    Article  CAS  Google Scholar 

  10. Dornan, D. et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429, 86–92 (2004).

    Article  CAS  Google Scholar 

  11. Wertz, I.E. et al. Human de-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303, 1371–1374 (2004).

    Article  CAS  Google Scholar 

  12. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  Google Scholar 

  13. Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V. & Karin, M. Ikkα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138–1143 (2005).

    Article  CAS  Google Scholar 

  14. Torrado, M., Senatorov, V.V., Trivedi, R., Fariss, R.N. & Tomarev, S.I. Pdlim2, a novel PDZ-LIM domain protein, interacts with α-actinins and filamin A. Invest. Ophthalmol. Vis. Sci. 45, 3955–3963 (2004).

    Article  Google Scholar 

  15. Tanaka, T., Soriano, M.A. & Grusby, M.J. SLIM is a nuclear ubiquitin E3 ligase that negatively regulates STAT signaling. Immunity 22, 729–736 (2005).

    Article  CAS  Google Scholar 

  16. Loughran, G. et al. Mystique is a new insulin-like growth factor-I-regulated PDZ-LIM domain protein that promotes cell attachment and migration and suppresses anchorage-independent growth. Mol. Biol. Cell 16, 1811–1822 (2005).

    Article  CAS  Google Scholar 

  17. Kadrmas, J.K. & Beckerle, M.C. The LIM domain: From the cytoskelton to the nucleus. Nat. Mol. Cell Biol. 5, 920–931 (2004).

    Article  CAS  Google Scholar 

  18. Anton, L.C. et al. Intracellular localization of proteasomal degradation of a viral antigen. J. Cell Biol. 146, 113–124 (1999).

    Article  CAS  Google Scholar 

  19. Rockel, T.D., Stuhlmann, D. & von Mikecz, A. Proteasomes degrade proteins in focal subdomains of the human cell nucleus. J. Cell Sci. 118, 5231–5242 (2005).

    Article  CAS  Google Scholar 

  20. von Mikecz, A. The nuclear ubiquitin-proteasome system. J. Cell Sci. 119, 1977–1984 (2006).

    Article  CAS  Google Scholar 

  21. Capili, A.D., Schultz, D.C., Rauscher, F.J., III & Borden, K.L.B. Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains. EMBO J. 20, 165–177 (2001).

    Article  CAS  Google Scholar 

  22. Tam, W.F., Lee, L.H., Davis, L. & Sen, R. Cytoplasmic sequestration of rel proteins by IκBα requires CRM1-dependent nuclear export. Mol. Cell. Biol. 20, 2269–2284 (2000).

    Article  CAS  Google Scholar 

  23. Zhong, S., Salomoni, P. & Pandolfi, P.P. The transcriptional role of PML and the nuclear body. Nat. Cell Biol. 2, E85–E90 (2000).

    Article  CAS  Google Scholar 

  24. Zimber, A., Nguyen, Q.D. & Gespach, C. Nuclear bodies and compartments: functional roles and cellular signalling in health and disease. Cell. Signal. 16, 1085–1104 (2004).

    Article  CAS  Google Scholar 

  25. Ouaaz, F., Li, M. & Beg, A.A. A critical role for the RelA subunit of nuclear factor kB in regulation of multiple immune-response genes and in Fas-induced cell death. J. Exp. Med. 189, 999–1004 (1999).

    Article  CAS  Google Scholar 

  26. Conaway, R.C., Brower, C.S. & Conaway, J.W. Emerging roles of ubiquitin in transcription regulation. Science 296, 1254–1258 (2002).

    Article  CAS  Google Scholar 

  27. Floyd, Z.E., Trausch-Azar, J.S., Reinstein, E., Ciechanover, A. & Schwartz, A.L. The nuclear ubiquitin-proteasome system degrades MyoD. J. Biol. Chem. 276, 22468–22475 (2001).

    Article  CAS  Google Scholar 

  28. Shirangi, T.R., Zaika, A. & Moll, U.M. Nuclear degradation of p53 occurs during down-regulation of the p53 response after DNA damage. FASEB J. 16, 420–422 (2002).

    Article  CAS  Google Scholar 

  29. Matera, A.G. Nuclear bodies: multifaced subdomains of the interchromatin space. Trends Cell Biol. 9, 302–309 (1999).

    Article  CAS  Google Scholar 

  30. Johnston, J.A., Ward, C.L. & Kopito, R.R. Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898 (1998).

    Article  CAS  Google Scholar 

  31. Goldberg, A.L. Protein degradation and protection against misfolded or damaged proteins. Nature 426, 895–899 (2003).

    Article  CAS  Google Scholar 

  32. Fabunmi, R.P., Wigley, W.C., Thomas, P.J. & DeMartino, G.N. Interferon γ regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. J. Cell Sci. 114, 29–36 (2000).

    Google Scholar 

  33. Sachdev et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103 (2001).

    Article  CAS  Google Scholar 

  34. Ross, S., Best, J.L., Zon, L.I. & Gill, G. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10, 831–842 (2002).

    Article  CAS  Google Scholar 

  35. Harris, B.Z. & Lim, W.A. Mechanism and role of PDZ domains in signaling complex assembry. J. Cell Sci. 114, 3219–3231 (2001).

    CAS  PubMed  Google Scholar 

  36. Schulz, T.W. et al. Actin/α-actinin-dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL. J. Neurosci. 24, 8584–8589 (2004).

    Article  CAS  Google Scholar 

  37. Bettinger, B.T., Gilbert, D.M. & Amberg, D.C. Actin up in the nucleus. Nat. Mol. Cell. Biol. 5, 410–415 (2004).

    Article  CAS  Google Scholar 

  38. Gettemans, J. et al. Nuclear actin-binding proteins as modulators of gene transcription. Traffic 6, 847–857 (2005).

    Article  CAS  Google Scholar 

  39. Nemeth, Z.H. et al. Disruption of the cytoskeleton results in nuclear factor-κB activation and inflammatory mediator production in cultured human intestinal epithelial cells. J. Cell. Physiol. 200, 71–81 (2004).

    Article  CAS  Google Scholar 

  40. Wu, W.S. et al. Promyelocytic leukemia protein sensitizes tumor necrosis factor alpha-induced apoptosis by inhibiting the NF-κB survival pathway. J. Biol. Chem. 278, 12294–12304 (2003).

    Article  CAS  Google Scholar 

  41. Birbach, A. et al. Signaling molecules of the NF-κB pathway shuttle constitutively between cytoplasm and nucleus. J. Biol. Chem. 277, 10842–10851 (2002).

    Article  CAS  Google Scholar 

  42. Fu, L. et al. Nuclear aggresomes form by fusion of PML-associated aggregates. Mol. Biol. Cell 16, 4905–4917 (2005).

    Article  CAS  Google Scholar 

  43. von Mikecz, A. Xenobiotic-induced autoimmunity and protein aggregation diseases share a common subnuclear pathology. Autoimmun. Rev. 4, 214–218 (2005).

    Article  CAS  Google Scholar 

  44. Chen, M. et al. Recruitment of topoisomerase I (Scl-70) to nucleoplasmic proteasomes in response to xenobiotics suggests a role for altered antigen processing in scleroderma. Arthritis Rheum. 52, 877–884 (2005).

    Article  CAS  Google Scholar 

  45. Campanero, M.R. & Flemington, E.K. Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc. Natl. Acad. Sci. U.S.A. 94, 2221–2226 (1997).

    Article  CAS  Google Scholar 

  46. Fey, E.G., Wan, K.M. & Penman, S. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: Three-dimensional organiztion and protein composition. J. Cell Biol. 98, 1973–1984 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Hoshino, T. Sugiyama, M. Saito for discussions; N. Okita, N. Iwami, Y. Fukuda and E. Haga for technical assistance; S. Haraguchi for secretarial assistance; A. Furuno for help with confocal microscopy; and R. Triendl, L. Leclercq and P. Burrows for critical review of the manuscript. The plasmid pCII-CMV-MCS-IRES-Venus was provided by H. Miyoshi (University of Tsukuba) and A. Miyawaki (RIKEN Brain Science Institute), and the ELAM-1 luciferase reporter construct was provided by D. Golenbock (University of Massachusetts Medical School). Supported by Scientific Research of MEXT (Ministry of Education, Culture, Sports. Science and Technology) and the Japan Society for the Promotion of Science (T.T. and T.K.), the Mochida Memorial Foundation for Medical and Pharmaceutical Research (T.T. and T.K.), the RIKEN Strategic Research Program (T.T. and T.K.), the Uehara Memorial Foundation (T.K.), the Sumitomo Foundation (T.T.), the National Institutes of Health (AI506296 to M.J.G.) and the G. Harold and Leila Y. Mathers Charitable Foundation (M.J.G.).

Author information

Authors and Affiliations

Authors

Contributions

T.T. contributed to general experiments and design with the direction and supervision of T.K.; M.J.G. contributed to discussions and manuscript criticism.

Corresponding author

Correspondence to Tsuneyasu Kaisho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Interaction of PDLIM2 mutants lacking LIM or PDZ domains with endogenous p65 is comparable to that of wild-type PDLIM2. (PDF 67 kb)

Supplementary Fig. 2

PDZ domain of PDLIM2 is not required for p65 ubiquitination. (PDF 47 kb)

Supplementary Fig. 3

Enhanced proinflammatory cytokine production in Pdlim2−/− cells in the absence of IFN-γ. (PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Grusby, M. & Kaisho, T. PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol 8, 584–591 (2007). https://doi.org/10.1038/ni1464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1464

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing